Digital Library
Search: "[ keyword: Supervised Learning ]" (13)
Improved Focused Sampling for Class Imbalance Problem
Man Sun Kim , Hyung Jeong Yang , Soo Hyung Kim , Wooi Ping Cheah The KIPS Transactions:PartB ,
Vol. 14, No. 4, pp. 287-294,
Aug.
2007
10.3745/KIPSTB.2007.14.4.287
10.3745/KIPSTB.2007.14.4.287
Improving the Classification Accuracy Using Unlabeled Data: A Naive Bayesian Case
Chang Hwan Lee The KIPS Transactions:PartB ,
Vol. 13, No. 4, pp. 457-462,
Aug.
2006
10.3745/KIPSTB.2006.13.4.457
10.3745/KIPSTB.2006.13.4.457
Autoencoder Based N-Segmentation Frequency Domain Anomaly Detection for Optimization of Facility Defect Identification
Kichang Park, Yongkwan Lee The Transactions of the Korea Information Processing Society,
Vol. 13, No. 3, pp. 130-139,
Mar.
2024
https://doi.org/10.3745/TKIPS.2024.13.3.130
Keywords: Anomaly Detection, Prediction Maintenance, Autoencoder, Unsupervised learning, Frequency Domain
https://doi.org/10.3745/TKIPS.2024.13.3.130
Keywords: Anomaly Detection, Prediction Maintenance, Autoencoder, Unsupervised learning, Frequency Domain
Comparative Analysis of Self-supervised Deephashing Models for Efficient Image Retrieval System
Kim Soo In, Jeon Young Jin, Lee Sang Bum, Kim Won Gyum KIPS Transactions on Software and Data Engineering,
Vol. 12, No. 12, pp. 519-524,
Dec.
2023
https://doi.org/10.3745/KTSDE.2023.12.12.519
Keywords: Deephashing, Image retrieval, Variational Inference, Self-Supervised Learning, Attention Mechanism
https://doi.org/10.3745/KTSDE.2023.12.12.519
Keywords: Deephashing, Image retrieval, Variational Inference, Self-Supervised Learning, Attention Mechanism
Intrusion Detection Method Using Unsupervised Learning-Based Embedding and Autoencoder
Junwoo Lee, Kangseok Kim KIPS Transactions on Software and Data Engineering,
Vol. 12, No. 8, pp. 355-364,
Aug.
2023
https://doi.org/10.3745/KTSDE.2023.12.8.355
Keywords: Anomaly Detection, Unsupervised learning, Embedding Techniques, Autoencoder, Time-Series Data
https://doi.org/10.3745/KTSDE.2023.12.8.355
Keywords: Anomaly Detection, Unsupervised learning, Embedding Techniques, Autoencoder, Time-Series Data
Traffic Attributes Correlation Mechanism based on Self-Organizing Maps for Real-Time Intrusion Detection
Kyoung Ae Hwang , Ha Young Oh , Ji Young Lim , Ki Joon Chae , Jung Chan Nah The KIPS Transactions:PartC,
Vol. 12, No. 5, pp. 649-658,
Oct.
2005
10.3745/KIPSTC.2005.12.5.649
10.3745/KIPSTC.2005.12.5.649
Construction of Linearly Aliened Corpus Using Unsupervised Learning
Kong Joo Lee , Jae Hoon Kim The KIPS Transactions:PartB ,
Vol. 11, No. 3, pp. 387-394,
Jun.
2004
10.3745/KIPSTB.2004.11.3.387
10.3745/KIPSTB.2004.11.3.387
Network Intrusion Detection System Using Feature Extraction Based on AutoEncoder in IOT environment
Joohwa Lee, Keehyun Park KIPS Transactions on Software and Data Engineering,
Vol. 8, No. 12, pp. 483-490,
Dec.
2019
https://doi.org/10.3745/KTSDE.2019.8.12.483
Keywords: NIDS, IoT, Unsupervised learning, Machine Learning, Autoencoder
https://doi.org/10.3745/KTSDE.2019.8.12.483
Keywords: NIDS, IoT, Unsupervised learning, Machine Learning, Autoencoder
A Korean Language Stemmer based on Unsupervised Learning
Se Hyeong Cho The KIPS Transactions:PartB ,
Vol. 8, No. 6, pp. 675-684,
Dec.
2001
10.3745/KIPSTB.2001.8.6.675
10.3745/KIPSTB.2001.8.6.675
Prediction of Cryptocurrency Price Trend Using Gradient Boosting
Joo-Seong Heo, Do-Hyung Kwon, Ju-Bong Kim, Youn-Hee Han, Chae-Hun An KIPS Transactions on Software and Data Engineering,
Vol. 7, No. 10, pp. 387-396,
Oct.
2018
10.3745/KTSDE.2018.7.10.387
Keywords: Price Prediction, Cryptocurrency, Machine Learning, Supervised Learning, Gradient Boosting
10.3745/KTSDE.2018.7.10.387
Keywords: Price Prediction, Cryptocurrency, Machine Learning, Supervised Learning, Gradient Boosting