Digital Library
Search: "[ keyword: Loss Function ]" (4)
Performance Improvement Method of Convolutional Neural Network Using Combined Parametric Activation Functions
Young Min Ko, Peng Hang Li, Sun Woo Ko KIPS Transactions on Software and Data Engineering,
Vol. 11, No. 9, pp. 371-380,
Sep.
2022
https://doi.org/10.3745/KTSDE.2022.11.9.371
Keywords: Convolutional Neural Network, Nonlinear Activation Function, Combined Parametric Activation Function, Loss Function

Keywords: Convolutional Neural Network, Nonlinear Activation Function, Combined Parametric Activation Function, Loss Function
An Edge Detection Technique for Performance Improvement of eGAN
Lee Cho Youn, Ji Su Park, Jin Gon Shon KIPS Transactions on Software and Data Engineering,
Vol. 10, No. 3, pp. 109-114,
Mar.
2021
https://doi.org/10.3745/KTSDE.2021.10.3.109
Keywords: Generative Adversarial Network, Loss Function, Edge detection, eGAN

Keywords: Generative Adversarial Network, Loss Function, Edge detection, eGAN
A Stock Price Prediction Based on Recurrent Convolution Neural Network with Weighted Loss Function
HyunJin Kim, Yeon Sung Jung KIPS Transactions on Software and Data Engineering,
Vol. 8, No. 3, pp. 123-128,
Mar.
2019
https://doi.org/10.3745/KTSDE.2019.8.3.123
Keywords: Artificial intelligence, Recurrent Convolution Neural Network, Stock Price Prediction, Weighted Loss Function

Keywords: Artificial intelligence, Recurrent Convolution Neural Network, Stock Price Prediction, Weighted Loss Function
Online Hard Example Mining for Training One-Stage Object Detectors
Incheol Kim KIPS Transactions on Software and Data Engineering,
Vol. 7, No. 5, pp. 195-204,
May.
2018
10.3745/KTSDE.2018.7.5.195
Keywords: One-Stage Object Detection, Deep Convolutional Neural Network, Online Hard Example Mining, Loss Function

Keywords: One-Stage Object Detection, Deep Convolutional Neural Network, Online Hard Example Mining, Loss Function
Category Search
Publications
-
Vol. 13, 2024
-
Vol. 12, 2023
- Vol. 12, No. 12 (Dec. 2023)
- Vol. 12, No. 11 (Nov. 2023)
- Vol. 12, No. 10 (Oct. 2023)
- Vol. 12, No. 9 (Sep. 2023)
- Vol. 12, No. 8 (Aug. 2023)
- Vol. 12, No. 7 (Jul. 2023)
- Vol. 12, No. 6 (Jun. 2023)
- Vol. 12, No. 5 (May. 2023)
- Vol. 12, No. 4 (Apr. 2023)
- Vol. 12, No. 3 (Mar. 2023)
- Vol. 12, No. 2 (Feb. 2023)
- Vol. 12, No. 1 (Jan. 2023)
-
Vol. 11, 2022
- Vol. 11, No. 12 (Dec. 2022)
- Vol. 11, No. 11 (Nov. 2022)
- Vol. 11, No. 10 (Oct. 2022)
- Vol. 11, No. 9 (Sep. 2022)
- Vol. 11, No. 8 (Aug. 2022)
- Vol. 11, No. 7 (Jul. 2022)
- Vol. 11, No. 6 (Jun. 2022)
- Vol. 11, No. 5 (May. 2022)
- Vol. 11, No. 4 (Apr. 2022)
- Vol. 11, No. 3 (Mar. 2022)
- Vol. 11, No. 2 (Feb. 2022)
- Vol. 11, No. 1 (Jan. 2022)
-
Vol. 10, 2021
- Vol. 10, No. 12 (Dec. 2021)
- Vol. 10, No. 11 (Nov. 2021)
- Vol. 10, No. 10 (Oct. 2021)
- Vol. 10, No. 9 (Sep. 2021)
- Vol. 10, No. 8 (Aug. 2021)
- Vol. 10, No. 7 (Jul. 2021)
- Vol. 10, No. 6 (Jun. 2021)
- Vol. 10, No. 5 (May. 2021)
- Vol. 10, No. 4 (Apr. 2021)
- Vol. 10, No. 3 (Mar. 2021)
- Vol. 10, No. 2 (Feb. 2021)
- Vol. 10, No. 1 (Jan. 2021)
-
Vol. 9, 2020
- Vol. 9, No. 12 (Dec. 2020)
- Vol. 9, No. 11 (Nov. 2020)
- Vol. 9, No. 10 (Oct. 2020)
- Vol. 9, No. 9 (Sep. 2020)
- Vol. 9, No. 8 (Aug. 2020)
- Vol. 9, No. 7 (Jul. 2020)
- Vol. 9, No. 6 (Jun. 2020)
- Vol. 9, No. 5 (May. 2020)
- Vol. 9, No. 4 (Apr. 2020)
- Vol. 9, No. 3 (Mar. 2020)
- Vol. 9, No. 2 (Feb. 2020)
- Vol. 9, No. 1 (Jan. 2020)
-
Vol. 8, 2019
- Vol. 8, No. 12 (Dec. 2019)
- Vol. 8, No. 11 (Nov. 2019)
- Vol. 8, No. 10 (Oct. 2019)
- Vol. 8, No. 9 (Sep. 2019)
- Vol. 8, No. 8 (Aug. 2019)
- Vol. 8, No. 7 (Jul. 2019)
- Vol. 8, No. 6 (Jun. 2019)
- Vol. 8, No. 5 (May. 2019)
- Vol. 8, No. 4 (Apr. 2019)
- Vol. 8, No. 3 (Mar. 2019)
- Vol. 8, No. 2 (Feb. 2019)
- Vol. 8, No. 1 (Jan. 2019)
-
Vol. 7, 2018
- Vol. 7, No. 12 (Dec. 2018)
- Vol. 7, No. 11 (Nov. 2018)
- Vol. 7, No. 10 (Oct. 2018)
- Vol. 7, No. 9 (Sep. 2018)
- Vol. 7, No. 8 (Aug. 2018)
- Vol. 7, No. 7 (Jul. 2018)
- Vol. 7, No. 6 (Jun. 2018)
- Vol. 7, No. 5 (May. 2018)
- Vol. 7, No. 4 (Apr. 2018)
- Vol. 7, No. 3 (Mar. 2018)
- Vol. 7, No. 2 (Feb. 2018)
- Vol. 7, No. 1 (Jan. 2018)
-
Vol. 6, 2017
- Vol. 6, No. 12 (Dec. 2017)
- Vol. 6, No. 11 (Nov. 2017)
- Vol. 6, No. 10 (Oct. 2017)
- Vol. 6, No. 9 (Sep. 2017)
- Vol. 6, No. 8 (Aug. 2017)
- Vol. 6, No. 7 (Jul. 2017)
- Vol. 6, No. 6 (Jun. 2017)
- Vol. 6, No. 5 (May. 2017)
- Vol. 6, No. 4 (Apr. 2017)
- Vol. 6, No. 3 (Mar. 2017)
- Vol. 6, No. 2 (Feb. 2017)
- Vol. 6, No. 1 (Jan. 2017)
-
Vol. 5, 2016
- Vol. 5, No. 12 (Dec. 2016)
- Vol. 5, No. 11 (Nov. 2016)
- Vol. 5, No. 10 (Oct. 2016)
- Vol. 5, No. 9 (Sep. 2016)
- Vol. 5, No. 8 (Aug. 2016)
- Vol. 5, No. 7 (Jul. 2016)
- Vol. 5, No. 6 (Jun. 2016)
- Vol. 5, No. 5 (May. 2016)
- Vol. 5, No. 4 (Apr. 2016)
- Vol. 5, No. 3 (Mar. 2016)
- Vol. 5, No. 2 (Feb. 2016)
- Vol. 5, No. 1 (Jan. 2016)
-
Vol. 4, 2015
- Vol. 4, No. 12 (Dec. 2015)
- Vol. 4, No. 11 (Nov. 2015)
- Vol. 4, No. 10 (Oct. 2015)
- Vol. 4, No. 9 (Sep. 2015)
- Vol. 4, No. 8 (Aug. 2015)
- Vol. 4, No. 7 (Jul. 2015)
- Vol. 4, No. 6 (Jun. 2015)
- Vol. 4, No. 5 (May. 2015)
- Vol. 4, No. 4 (Apr. 2015)
- Vol. 4, No. 3 (Mar. 2015)
- Vol. 4, No. 2 (Feb. 2015)
- Vol. 4, No. 1 (Jan. 2015)
-
Vol. 3, 2014
- Vol. 3, No. 12 (Dec. 2014)
- Vol. 3, No. 11 (Nov. 2014)
- Vol. 3, No. 10 (Oct. 2014)
- Vol. 3, No. 9 (Sep. 2014)
- Vol. 3, No. 8 (Aug. 2014)
- Vol. 3, No. 7 (Jul. 2014)
- Vol. 3, No. 6 (Jun. 2014)
- Vol. 3, No. 5 (May. 2014)
- Vol. 3, No. 4 (Apr. 2014)
- Vol. 3, No. 3 (Mar. 2014)
- Vol. 3, No. 2 (Feb. 2014)
- Vol. 3, No. 1 (Jan. 2014)
-
Vol. 2, 2013
- Vol. 2, No. 12 (Dec. 2013)
- Vol. 2, No. 11 (Nov. 2013)
- Vol. 2, No. 10 (Oct. 2013)
- Vol. 2, No. 9 (Sep. 2013)
- Vol. 2, No. 8 (Aug. 2013)
- Vol. 2, No. 7 (Jul. 2013)
- Vol. 2, No. 6 (Jun. 2013)
- Vol. 2, No. 5 (May. 2013)
- Vol. 2, No. 4 (Apr. 2013)
- Vol. 2, No. 3 (Mar. 2013)
- Vol. 2, No. 2 (Feb. 2013)
- Vol. 2, No. 1 (Jan. 2013)
-
Vol. 1, 2012
Old Journals
Indexing
All publications of KTSDE is indexed in DOI, EBSCO, Google Scholar, Crossref, and CrossCheck.
KTSDE is also selected as the Journal for Accreditation by NRF (National Research Foundation of Korea).