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-essors, each with private memory, intercon-
nected to some extent by communication links
{6). The heterogeneity in a computing: system
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A heterogeneous multi-computer system is
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specific services for improving system throu-
ghput.

A task to be run on a distributed system
consists of m modules. Each of the modules
comprising a task will execute on the one of
n processors and communicate with some oth
—er modules of the task. Furthermore, a dist
-ributed program is defined as a program that
consists of several program modules or tasks
that are free to reside on any processor in the
system. ’

Bacause of high penalties for communication,
the practical solution for using a heterogeneous
system is to do as little communication between
processors as possible, relegating such commun
-ication to file transfers before and after major
blocks of computation are run. This category of
scheduling problems have been traditionally
formulated as a task assignment problem(1,
3.4).

A task allocation problem is a difficult
problem even without timing constraints. For
example, finding optimal assignment of tasks
with an arbitrary communication graph to four

or more processors with difference speeds is

known to be NP-hard. Considerable efforts
have been spent on more restrictive allocation
problems or on developing heuristic algorithms
to find suboptimal solutions. Most of the
results can be extended and applied to find
suboptimal solutions.

Stone developed network flow algorithms(14)
to allocate tasks with arbitrary communication
patterns in dual-processor and three-processor
systems. Lee and et al. extended Stones result

to a linear-array structured system(7). Recently, .

the task assignment problem on host satellite
systems and tree structure systems using simil

. ar approach are developed by Seo and et al(8.

9.

Bokhari developed a dynamic programming
algorithm to allocate tasks that form a tree to
a system with an arbitrary number of processors.
The time complexity of his algorithm is O(nm?
(56). His approach was extended by Towsley[15)
to handle tasks with series-parallel precedence
graph.

The above approaches consider heterogen-
eous processors. However, these approaches
attempt to minimize the total execution cost
and the communication cost of tasks. They
do not attempt to balance the load of the
processors(2].

Efe, et al. developed a heuristic, allocation
algorithm(10,11] to balance processor load
aid to minimize communication cost. His
algorithm consist of two phases. First, tasks
are clustered with each other to optimize
the communication cost and each cluster of
tasks is assigned to a processor. Then, tasks
are shifted from overloaded to underloaded
processors in order to meet load balance
constraints.

The algorithm is repeated until a satisfact
~ory degree of load-balancing is archived. This
algorithm, however, fail to distribute the tasks
evenly when the processors in the system
are not similar.

Lo developed heuristic algorithms(12) which
incorporate a cost function to maximize the
concurrent approaches that can also bg ,applied
to hard real-time systems in the same ways as
described above.

In this paper, we present an efficient
heuristic task allocation algorithm. The
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allocation is done before actual run time of
the application problem. It is assumed that
the execution cost of the subtasks and the
IPC cost. which arises due to the interacting
modules residing on different processors. It
distributes the modules of an application
problem as evenly as possible among the
processorgs and tries to minimize the IPC
cost. The method can be applied to
partitioned programs of any number of
modules and to multi-computers with any
number of processors and any point-to-point
interconnection network.

2. Tesk Allocation Problem

2.1 Problem model

A multi-computer system can be represented
by an undirected graph called a processor
graph, Gp = (Vp, Ep), where Vp is the set'of
processors in the system and Ep€ VpX Vg is
the set of edges representing communication
links between processors.

Sl WBEIEG I

Similarly, each task: mfmm!m
undirected graph called the task araphm;g
(Vr, Er), where Vr is the set of nodes r@t’ﬁm

-ting a task of the job. and Bre V¥ is

the set of edges representing the intertadl é6m
-munication between the two task noded ‘tonti+
ected by the edge. When there is an edge Betw
-een two task nodes in Gr the two tduliaks

dinea e

said to be related to each ‘dther. =

In our case, the interconn@
processors is modeled by a ‘EodtH L

with a typical element ¢y denotmg the“

volume of communication between tasks J
and j. If the link (i,)eE; then c;=0.
Also we take c;=0, for all i.

The communication cost can be thought of

as being composed of two parts: a static part
that takes into account the total number of
bytes transferred in a single execution of tasks
i and j, and a dynamic part that accounts for
the frequency of process execution and
communications related queueing delays.

Note that whereas the static communication

cost can-be precisely accounted for by imspection
of the tasks cost, the dynamic part has to be
estimated based on gathered statistical informa
-tion and is dependent upon the allocation itself.
Next we model the interconnection of processors
through a delay matrix D where the typical ele
-ment dw denotes the communication delay for
sending a byte from a processor k to a processor
1 '
If procesasors -k and ] are neighbors in the
processor graph, then di reflects the cost
of point to point or multiple access
communication.

If the processors are not neighbors, but
there is a path form k to / in the
processor graph, then du reflects “the cost
of intraprocessor message Semw iﬁlt
menangs longth. Hia particuint wtiven
assigned task:ii.om processer k- ag¥task’ *j
on processor -1 then the commumdeativn
cost for -this . particular - asdignment 'is
taken to'be &y dy o T
Each tisk / represents a load /i on'Procsssor
Ii* me& M GPU’time mh-ta&k‘mm?

(iiie nm bt "a"n

*mv ‘ﬂhm‘ ‘ptoéc#sors ahd &uﬁw 7o
Mis% % cah calduldte thy 1ded of $hpsdnic
process; if ‘wé et the protess” rufi'’én the
processor and measure the CPU exetution- time
e. In addition, we have to measure the rate at
which this process is asked to execute.

‘The problem involves the development of
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task allocation models for the heterogeneous
computing system. The model must allocate
tasks among the processors to archive the
following goals:

* Allow specification of a large number
of constraints to facilitate a variety of
engineering application requirements.

* Balance the utilization of individual
processors.

* Minimize the interprocessor communication
cost.

The design of a mathematical model for
task allocation for a heterogeneous computing
system involves the following steps:

¢ Formulate the cost function te measure
the interprocessor communication{IPC)
cost and the processing cost.

* Formulate a set of constraints to meet
the diverse requirements.

* Derive an iterative algorithm to obtain a
minimum total cost solution.

22 Cost function

The cost function is formulated as the sum
of the IPC cost and the processing cost.
IPC cost is a function of both task coupling
factors and interprocessor distance. Coupling
factor ¢y is the number of data units
transferred from task i to task .
Interprocessor distance du is certain distance
related communication costs associated with
one unit of data transferred from processor k
to processor I If tasks i and j are assigned to
processors k and J, respectively, the
interprocessor cost is cy-dy. If k = I then
-du=0. The unit of IPC cost is application
dependent. For example, the unit of ¢y is word
and dy is $/word, the IPC unit is dollars.

Processing cost g represents the cost to

process task / on processor k. It can bé used
to control the processor assignment. For
example, if task i must not be executed on the
processor k, a very large value can be
assigned to gx to inhibit the assignment.

The assignment variable is defined as follows:

1, if task 7 is assigned to processor k.
X = )
0, otherwise.

The total cost for processing the tasks is
stated as

EZ(WG aX at ZZC:# WX aX .

The normalize constant w is used to scale
processing cost and IPC cost to account for
any difference in measuring units.

In general, we are considering a heterogene-
ous processor system in which each processor
may have different performance and reliability
characteristics. In order to fully utilize this
diversity of processing power it is advantageous
to assign the program modules of a distributed
program to the processors in such a way that
the execution time of the entire program is mi-
nimized.

This assignment of tasks to processors to
maximize performance is commonly called load
balancing. Each processor k sets an upper
bound Uxr on the total load that can be
allocated, beyond which this processor enters
the nonlinear part of its. load versus
throughput curve and becones saturated.

Total load on a processor is the sum of
execution costs of the modules assigned to it.
Then the load balancing constraints can be
written as:

}:’* Xu < U, for all &

A0 &
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The above load constraint is hard to treat /'\
since it’s nonlinear property. The overloaded @ sz/ @
processors can perform their own processing
with the performance degradation. If a
processor not run on the sutable load., the
amount of lower or upper it's load capability
is a messure of loss or price paid because of
imbalanee, compared to the case when each
processor has the suitable load.

a) processor graph

For a given assignment the load imbalance
cost is formulated as follows:

COST o = §D| g,.lﬂxik_ Unl- b) Task graph
Thus the processor allocation of program (Fig. 1) Processor #raph and Task Graph
modules is to be carried out so that each ' ,
module is assigned te a processor whose (Table 1> Execution cost table
capabilities are most appropriate for the P P Ps
module, and total cost is minimized that is m; 5 . - attached to P;
sum of IPC cost and exstution cost and 2 4 3 3
imbalance cost of the assignment, i.e., = 2 > 1
COST gyt = COST geet COST ypct COST jaa
ms 4 4 5
= 35X + S cuduxaxy m | 2| 3 | =
+a$"x"7q'| csbam g oom m | 3 3 2
Civgl s el ed iy ® 4 4 b e
2.3 Task allocetion E\llmla S wsub 108290870 s | o | o | .1 | gttached to Py

The Fig. 1 and shows an exampie Progeiild
graph in a distributed system. The nodésiine
the program graph represent modules, an&f‘ﬁ
links represent intermodule commumicaties
patterns. The numbers. on thd -
called the branch weights, “teprese
of communication “betwéen  mudites
modules are net resiflent ma
to be zero when the pair ' "of
coexist. The costs are normally give b
of time or dollars, and the units must be the
same units to express execution costs.

(Flmz)Malmnonmmmemmmleosta

’ ’that a mbdule cannot be executed on that
processor. We have shown in this example a
situation in which some modules run faster on

‘ processor 1 and some modules run faster on
The Table 1 shows the execution costs of the -processor. 2 and others run faster on processor

program modules. An infinite cost indicates 3. For any given module assignment, the cost
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of the assignment is tho sum of the execuiion
costs from the table plus the sumn. of Jthe
intermodule communication costs for those
modules that are not coexist.

3. The. Heurislic Algorithm

3.1 Definiions and assumptions

In almoat all other heuristic approaches, a
search is made for a pair of modules with the
maximum communicatjon cost between them.
Such a module pair is assigned to a processor
with the intention of minimizing the IPC cost.
But, in several cases, assigning a pair of
modules. with the largest communication cost
to a processor would not result in a reduction
of IPC cost. This fact is evident when a
module is interacting with many other
modules.

In our algorithm, therefore we do not search
for such pairs of modules, but for single
modules called maximally linked modules, as
defined below:

Definition:

The sum of intermodule communication cost
of mx with other modules is called the link
caguity of the module and a module mx in a
pmﬁam lraph is called a n}ppmgﬂy fnked
module if the Jink capacity is larger than the
link” capaclt.y of an ot.her module, i.e.,

$c,.->§: for all A+k such that cu+0

where ¢y is the IPC cost between the module
m and ny whén my and my are as#igned to
different processors. Thus, a maximally linked
module can be easily determined by finding the
sum of the labels of: all .edges incident on a
node. Since a maximally linked module has

maximum commynication with the interacting
modules, it would be advantageous to form
clusters around such modules. Thus, a
maximally linked module will tend to absorb
its neighboring modules. The maximally linked
modules represent maxima of intermodule
communications in the given program graph.
Some modules may have to be assigned to
specific processors, to exploit their unique
capabilities.

In this respect modules are divided into
three categories, as follows:

(a) attached modules that can only be
assigned to certain processors

(b) modules that can be assigned to any one
of a certain set of processors:

these are also considered as attached
modules

(¢) modules that can be assigned to any
processor.

32 Heuristic algorithm v

Our algorithm starts by assigning one or
more modules to each processor. These could
be the attached modules of the processors. If a
processor dose not have any attached module,
then we assign one of the maximally linked
module to it. Having assigned an initial
module to each processor, other modules which
have maximum data exchfange with the
already assigned modules on a processor are
chosen for allocation.
Thus, the module clusters are formed around
the attached modules or maximally linked
modules.

The number of clusters is equal to the
number of processors. This process is to
continued until the total cost becomes
minimum. The minimally linked modules are
used to adjustment load condition. The
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algorithm is as follows:

The algorithm

Step 1: Order all modules of M + (my, ... , my)
in decreasing order of link
capacity.

Step 2: Assign initial module to each processor.
Processoll's having attached modules
are assigned these modules.

These modules are removed in the
list M.

Step 3: For a processor P. calculate unbalance
cost.

Step 4: While (List M is not empty) do
Get a module ox from M and
allocate to the processor P
which can result the minimum

cost.
Update the unbalance cost of B.
End(While)
Step 5: Order all modules of M = (my, ... . m)
Step 6: Repeat

Choose a module m: which is
assigned to processor P from
M and a processor P such
that the cost improvement is
maximum. _

If such a my exists, move it
to Pr. -

Until no oy was thosen
(*End of algorithm#)

Step 1 and Step 5 list modules in preferred
orders. Step 3 calculates the unbalance- CDI;"Of
the processors. Step 4 tries to assign th.
module at the processor is the molf ‘i
efficiently. Step 6 tries to dm&'
cost of an assignment as possible. Using af
efficient sorting algorithm, Step 1 and Step 5
can be done in O(n log n) in the worst case.
Step 4 needs O(n’m) comparisons and Step 6
needs O(nm?* comparisons. Since n is typically
greater than m. the time complexity of the

algorithm is O(n’m).

33 An iliusirative etample-

In this example, the distributed computer
system consists of three processors with the
topology shown in Fig. 1. Table 1 gives the
load capacity of the processors and attached
modules. Module allocation is started by
initially assigning the attached modules to
their respective processors:
module 1 to pl and module 7 to P3 and
ordered set M = (m6, m2, m4, m3, m7) is
obtained. In order to allocate a module to
processor properly, A good estimation cost
function is required.

If m; is selected to allocate to P, we
calculate an estimated allocation cost COSTi.
An estimated cost CQ8Ti consist of the three
cost EXECw. IPCa and LOADa.

Each cost is calculated as follows.

EXECQ = I,-‘
IPCy = 2$Caduxaxﬂ
LOAD, = $lwm v~ $ﬂuxn+lm Ui

In this case, me s ﬁiﬁmally linked module,
thus ms is selected for- next allocation and
the estimated cost is @wlated as follows:

1PCy =
LOADs = -
EXECss = 2.

IPCss = 0,
LOADss = -

Since the sum of costs of COSTs is
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P, (3,6,-3) P,(3,3,-3) 93(2,0,-2)

|

P, 2,6,-2) P, 3,3,-3) P, (infinity)

|

P, (4,7,-4) P,(3,3,-3) Py(3,5,-3)

P, (4,4,-4) P,(4,0,0) By (5,4,1)

|

P,(2,2,-2) B,(2,2,2)  P;(4,6,2)

|

P, (infinity) P,(4,3,4) P, (4,0,2)

(Fig. 3) Snapshots of stepwise execution of the aigorithm

minimum, thus ms is allocated to Ps.
This process is continued until list M is
empty. All these steps involved in module
allocation are illustrated in Fig. 3.

If all modules are allocated to the

processors, the. reallocation process is
started(Step 5, Step 6). First, the minimally
linked module ml is selected. but it is
attached module. Thus the next module m?7 is
selected and reallocation cost is calculated as
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similar with previous described manner.

All  these steps involved in module
reallocation are illustrated in Figure 4. In this
case, the module my is reallocated to P; from
Ps and the module ms is reallocated to Pr from
Ps. The final clusters ‘allocated th

. NIV I 111 ¢ SRR
processors are shown in Figure 5 . ; :
P ipns o neidglon

1B B 2

EXEC =

IPC = 6+4=10
LOAD = 1+0+0=1
TOTAL = 35

(Fig. 5) Final allocation with cost 35

4, Simulation results and Conoclusions

4.1 Simulation resulls

To evaluate the effectiveness of the proposed
algorithm, simulations were run on a Sun
Sparc Station20 running Solaris 2.4.

The results in Table 2 show the general diff
-erences between the Sarje’s algorithm(13) and
our proposed algorithm. We performed 600 sim
-ulations for fully connected computer system
containing 3-7 processors. A large number of
program graphs were considered for evaluating
the performance of our algorithm. Phe execution
cost of subtasks were picked randomly in the
range from 5 to 50, and IPC costs were chosen
in the range from 0 to 20.

The algorithm in (13) can get a good. but
not asni optfial allocation for' a hothokeneous
and fully cohnected multi-computer system.
Thué ' 'simulations are evaluated for the
hotkidgenedus” fully-connected multi-computer

sydtems.

v

7

7 ical even for large,

4 conipiitls U5italit™ 8

rithm. The execution coﬁotmdulas
god repidosly in the reul TV1T00,
Wete coben fH ths e

(R

A simulated annealing approach is bdsed on
ar ‘avialogy between annealing process {h which
a dhéterail is melted and cooled very slowly
and the solution of a difficult combinatorial
optimization problem. The running times
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o {hale B Simuiation results!

n ., Our Alaont.hm Sarje’s Algorithm
EXEC IPC }, J.moTAL [TIMEms)| EXEC | IPC LOAD :| TOTAL |TIME(ms}
3 4812 | 123 6647 | 13.0 478 ﬁ&s 7421 682.1 10.9
4 4855 | 147 | 695.8 14.3 492.2 ‘[ 135, 74 | 7049 11.2.
5 4836 | 1469 ss.s’ " 699.0 15.8 4915 148.1 80.2 119.8 12.4
6 4801 | e 1 77 | sz 15.1 4847 | 1635 876 7| 7358 | 147
7 4819 | 183.3 80.9 746.1 16.3 486.7 | 1853 %08 | 762.8 1.5
(Table 3) Simulation resuits2
u Our Algorithm , Simulated Anasaling
EXEC IPC_ | LOAD | 7OTAL [TIME(ms) ] ¢ | LOAD | TOTAL [TIME(ms)
9635 | 1863 | 1e62 | 1540-] 262 84t6 | 1851 | 152 | 1479 | 3.8%
16 860.7 | 2ed | 1184 [ 18006 | M1 8434 . | 3254 | 13047 12002 | 387
32 8568 | 4373 | 1269 | 14210 | 416 840.6 | 4303 | 1344 | 14053 | 391
64 8533 | 598.3 | 1351 | 15860 | 594 8371 | 5901 | 140.7. | 15679 | 4.6
128 8505 | 8169 | 1493 | 18167 | 70.2 830.6 | 7906 | 160.4 | 17816 | 4.78

required by simulated anpealing approach are
thus excessive.

It can be seen that the proposed algorithm
is over thousands times as fast as simmulated
annealing methods. The costs generated by
simylated annealing were generally slightly
better. although the solutions obtaining by our
proposed algorithm were never worse by more
than 5% in terms of total costs.

As can be seen, the results produced by the
proposed algorithm decreased with eagh
allocation cost. This improvement can be
explained by observing the reassignment
process of the proposed ‘algorithm(i.e._ Step 6:)

42 Condsions
In order to fully utilize processing power it
is advantageous to assign the program modules
of a distributed program to the processors in
such a way that the execution time of the
entire program is minimized. The overloaded
processors can perform its own processing
with the performance degradation. Thus, the
processor allocation of program modules is

to be carried out so that each module is
assigned to a processor whose capabilities are
most appropriate for the module, and total
cost is minimized that is sum of IPC cost and
execution cost and imbalance cost of the
assignment.

In this paper. we present an effiecient
heuristic task allocation algorithm. The
algorithm converges fast and obtains a good
solution. Experimental results indicate that
the proposed algorithm performs quite well
on a variety of task-processor .system.
Heuristic.. algorithms do not alwa:{g"\ provide
the opﬁmum solution, However, 'i(tﬁmoat of
t.he cages, the algor,lthm presented‘ in tJiis
paper Aoes provide gohltlons that aré close
to optimum. Thus, the :pro)bsed algorithm is
clearly preferable in a practical context.
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