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Integrated Modeling of Distributed Object-Oriented Systems
Sangbum Lee'!

ABSTRACT

The design of distributed systems is difficult to achieve as the execulion patterns of distributed systems are
typically morc complex than those of non-distributed systems. Thus, rescarch toward the development of design
methods for distributed systems is quilely needed. As object-oriented systems and distributed systems share simi-
lar properties, the combination of these two is somehow natural. In this work, a design method of applying
object-oriented techniques to the design of distributed systems is introduced. The goal of the method in this
paper is to provide assistance to the process of specifying a formal object-oriented specification from graphical
representation specification inputs such as data flow diagrams, state transition diagrams and Petri nets. It
addresses the extraction of objects, operations and relationships from the problem domain with emphasis on the
specification of the characleristics of distributed systems. This object identification method is supported by a
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knowledge base that provides for thc automated analysis and reasoning about objects and their relationships.

The final object model is represented in a format which provides a formal mechanism for representing the object

information.

1. Introduction

Distributed computing systems are systems in
which multiple processors with their own memories
run independently by communicating with each other.
The design of distributed systems is difficult to
achieve as the execution patterns of distributed
systems are typically more complex than those of
non-distributed computing systems. Thus, research
toward the development of design methods for
distributed systems is quitely needed [1]. In this work,
a method of applying object-oriented techniques to
the design of distributed systems is presented.
Object-oriented approaches have received attention
since the early 1980s. With these approaches, a system
is developed based on objects, operations, and their
relationships. Object-oriented techniques have shown
promise features due to their powerful characteristics
including modularity, information hiding, inheritance
and reusability [2, 4].

Meanwhile, as complex requirements cause the system
size to become large, the need for effective techniques
to design large systems increases. Formal methods
which span the analysis and the design phases are
needed for large scale systems. There is currently
more research toward the development of notations
and techniques for specification models that to the
development of support tools for large-scale specifi-
cation [13]. This method integrates information from
multiple models to specify objects, object behavior
and relationships among objects from a distributed
object-oriented viewpoint. Multiple modeling techniques
are lypically used to specify a system as different
models specify the system from different viewpoints.
When a system is specified by a set of different

models, correct integration of such information in

order to derive a system specification is a critical task.

A goal of the method presented in this paper is to
provide assistance to the process of specifying a for-
mal object-oriented specification from graphical rep-
resentation specification inputs. including data flow
diagrams (DFDs). state transition diagrams (STDs)
and Petri nets. In Section 2, distributed object-
oriented systems are reviewed. The method is dis-
cussed in Section 3 in detail. Finally, Section 4

contains the summary.

2. Specification of Distributed Object-
Oriented Systems

As object-oriented systems and distributed systems
share similar properties, the combination of these
systems is somewhat natural. To identify parallelism
in software, the main objective is to decompose the
system into modules that can execute in parallel. An
object in an object-oriented system inherently has a
suitable form for a distributed system [16]. There arc
two ways to exploit parallelism in distributed
object-oriented systems. One way is to define an
object and a process separately. and the other way is
1o regard an objecl and a process as the same parallel
execution component. The second approach is more
widely used for distributed object-oriented syslems
because the parallel execution components, objecls.
can be easily identified {15]. In this work. we assume
that only active objects can be activated initially and
execute concurrently, i.e., passive objects can be
activated after they receive messages from active
objects.

There are four different approaches to specifying
distributed  systems: lransition-oriented, language-
oriented, hybrid, and algebraic. In the transition-

oriented approach, a system is represented by states



and events. Finite state machine, Petri nets, and IC*
[3] are representative models for this group. These
models have graphical formats, thus providing rela-
tive ease of understanding of executional aspects. In a
language-oriented approach, the computational aspects
of a system are represented by formal specification
languages or programming languages. The advantages
of this approach include easy implementation, strong
modeling power and ease of modeling data transfer.
It also offers some disadvantages such as difficulty of
modeling logical properties, difficulty of achieving
automatic implementation and increased complexity
according to the size of a system. A hybrid approach
is the combination of the transition-oriented approach
and language-oriented approach. In an algebraic
approach, axioms are used to specify the requirements
of systems [17] and abstract data types and processes
are specified in the form of algebras. CCS [10] is a
representative model of the algebraic model in which
the process is specified in an algebraic pattern [14].
Whle a transition-oriented approach provides for
casy of system modeling and understanding, the
language-oriented approach enhances the implemen-
tation process. In this work, we derive a language-
oriented specification model by integrating multiple

transition-oriented models.
3. Object-Driven Specification Method

This object-driven method is an integrated,
formalized method for identification of objects, object
properties and object behaviors from multi-model
formats. It addresses the extraction of objects,
operations and relationships from the problem
domain with emphasis on the specification of the
characteristics of distributed systems. This object
identification method is supported by a knowledge
base that provides for the automated analysis and
reasoning about objects and their relationships. The
final object model is represented in a format which

provides a formal mechanism for representing the
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object information. It also provides constructs that
allow for refinement of the specification. The five
sequential steps for this method are discussed in the

following subsections.

3.1 Develop graphical representations

Since a system is typically difficult to be completely
represented by a single model. multiple representations
are used in order to specify a system from different
viewpoints. For instance, the initial problem is fre-
quently represented with informal representation techni-
ques, such as the DFDs and entity relationship diagrams.
As the definition of the requirements proceeds, more
formal methods, such as the STDs and the Petri nets, are
used to show control and dynamic behavior. Among
many different modeling techniques, we have selected
three widely used models, DFD. STD and Petri nets,
to specify the initial problem domain information.
However, as these various techniques represent differ-
ent viewpoints of the application, a technique which
combines the requirements from the different models
to produce an integrated specification is required.

We discuss the process of the method by applying
it to an example, an elevator system which works on
m floors has n elevators. This problem is selected as it

is widely used as a specification example (5, 8]. A
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(Fig. 1) The data flow diagram of the elevator system
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portion of the representation of the elevator problem
with the DFD, STD and Petri net is illustrated in
Figures 1, 2 and 3, respectively. While the DFD
emphasizes the overall view of the system, the Petri
net and the STD describe a single component of the
system i.e., the dynamic behavior of process 3.6 (elev-
ator movement) is specified by a STD and a Petri net
only for the demonstration. The specification of the
other parts of the system with the Petri nets and the
STDs is not included in this paper. The method is
defined in Sections 3.2 through 3.5.

(Fig. 2) The state transition diagram for the elevator
movement

WNB{K+1}

(Fig. 3) The Petri net for the elevator upward movement

3.2. Convert each representation into internal

format

Initially, the graphical notation of each input
model is converted into an internal representative
form and stored in the knowledge base. Figure 4
shows the internal format for the DFD information.
Each component has its own identification number
and description. If a component does not have a
description in its original model, il remains as a null
in the internal format. For example, process2id, |pro-
cess_name], [function_name)) denotes a process in the
level 02 DFD. Other models have similar internal
formats. The internal formats for the Petri net and
the STD are similar to that of the DFD. The internal
representation of the Petri net in Figure 3 is given in
Figure 5. If any component in the graphical represen-
tation of each input model is not fully described. it
needs 1o be specified clearly in the internal represen-
tation. For example, transitions and places in the
Petri net in Figure 3 are denoted as abbreviated
symbols but the internal representation in Figure 5
has a full description for each component. This form
of internal representation provides the ability to deal
with incomplete information [9].

Early validation of requirements is important
because early detection of errors reduces software
development costs. Each model’s internal form is
validated according to pre-defined rules to help to
detect inconsistent information. If inconsistent facts
are found, the information is modified and reentered.
The DFD evaluation process is assisled by a regenerated

informal English document [9]. The Petri net can be

source2(id, [source_name] ). 1
sink2(id, [sink_name]). :
process?2( id, [process_name], [function_name]s), l
dst2(id, [datastore_name] ). "
dfw2(id, [dataflon_name]). }

l

Note : [function_name] := [action,object]

(Fig. 4) Data flow diagram’s internal format
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tran(1, t_01, [ 'set request floor(K+1)‘]).
tran(1, t_03, [ 'set request floor{K+1)']).
tran(1, t_05, [ 'set request floor(L)‘]).
tran(1, t_07,[ ‘move up for floer(K+1)']).
tran(1,t_09,[’'stop at floor(K+1)']).
place(1,p_ 01, ["In_button(K+1)= ON']).
place(1, p_03, [ 'Down_button(K+1)=0N‘]).
place(l, p_05, [ ‘Up_button(L)=ON']).
place(l, p_07. [ ‘Staying floor(K)‘l).
place(1, p_09, [ 'Floor{L) requested’]).
place(l,p_11, [ "Staying floer(K+1)‘]).

are(1, [p_01]. [t_01], [p_08]).
arc(1, [p_03], [t_03], [p_081).
arc(1, [p_05}, [t_05], [p_09]).
arc(l, [p_07,p_08],(t_07]. [p_08,p_10]).

%connection between transitions and places

arc(l,{p_08,p_10],[t_09], [p_11]).

pconnect(1, p_36, [elevator]). % this Petri net is related to process 3.6

tran(1, t_02, [ ‘set request floor(K+1)’]
tran(l, t_04, [ ‘set request floor(L)']).
tran(l, t_06, [ ‘set request floor(L)‘]).
tran(1, t_08, [ ‘move up for floor(L)]).
tran(1, t_10, [ ‘stop at floor(L)']).
place(1,p_02, [ "Up_button(K+1)= ON']).
place(1,p_04, [ "In_button{L)=0N']).
place(1,p_06, [ 'Down_button(L)=0N']).
place(1,p_08, [ ‘Floor(K+1) requested’])
place(1,p_10, [ ‘Arriving floor(K+1)']).
place(l,p_12, [ "Staying floor(L)’]).

arc(1, [p_02], [t_02], [p_081).

arc(1, [p_04], [t_04], [p_09]).

arc(1, [p_06], [t_06], [p_09]).

arc(1, [p_07,p_19],{t_08], [p_09,p_10]).
arc(l, {p_09,p_10], [t_10], [p_12]).

(Fig. 5) The internal representation of a Petri net

validuted by using the formal properties of the Petri
nets. such as a reachability tree [12]. By counting the
number of token at the particular places, undesirable

execution of the Petri nets can also be detected.

3.3 Build the knowledge base

The next step is to build the knowledge base. It
consists of the internal information of the input
models, defined rules. and the information derived by
the rules. A set of rules derives additional information
from initial information. The rules for extracting
information from each input model are discussed in
Section 3.3.1 thru Section 3.3.3. Rules for integration
of information and generation of a specification
model are introduced in Section 3.4 and Section 3.5,
respectively. As each input model represents a differ-
ent viewpoint, we obtain different types of infor-
mation from different models. While the DFDs are
introduced to extract the objects, operations and their
relationship, the STDs and the Petri nets are used to
extract detailed internal behavior of objects and/or

operations.

3.3.1 Information from the data flow diagrams

The DFD is the main source of objects and
operations. The frame of the specification method is
based on the information in the DFD. We have
developed a method which uses a set of DFDs to
build an architectural view of object-oriented systems
[9]. This method builds on that strategy. With this
method, a set of objects are extracted from any
component of the DFD, including the function name.
Most objects extracted from the DFD become sol-
ution space objects since the non-solution space
objects are eliminated during the design of the DFD.
We mark all objects selected from processes, data
stores and function names as solution space objects.
Objects from sources and sinks are considered as prob-
lem space objects. Solution space objects are divided
into active objects and passive objects. Objects that
are extracted from the process names are classified as
active objects and all other objects are classified as
passive objects.

Operations which are related to a particular object

are identified. The matching an object and its related
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operations is not straightforward. We extract the
operation explicitly from the function name in the
process which consists of an action-object fair. In
addition, implied operations are identified from the
relationship in the DFD components. During the
design of the DFD, a main function is typically
converted into a process, however, some operations
can be denoted by the relationship of the components.
The inheritance feature of object-oriented systems
enhances reusability and extendibility of software
systems [11]. Thus, classification of objects is a very
important part of any object-oriented approach. The
DFD neither specifies the objects nor explicitly
denotes the hierarchical relationships between objects.
If two different levels of physical DFDs are provided,
we classify the objects heuristically. When a process
in the high level DFD is expanded to several
processes, the process name in the high level DFD
become a class object and the instance objects are
identified from the corresponding processes names in
the low level DFD.

Visibility is defined by identifying the objects which
are related to a specific object. We define the visibility
of an object from the connected relationship in the
DFD. While an active object can see a set of active
objects and a set of passive objects, a passive object
only can be seen from the related active objects. By
identifying the visibility of objects, we establish the

communication routines between objects.

3.3.2 Information from the state transition
diagram

From the STDs, the states and events of all or part
of the system are extracted. The extraction of infor-
mation from the STD is straightforward as states and
input symbols correspond to conditions and events,
respectively. The STD to describe the behavior of pro-
cess 3.6 in DFD is given in Figure 2. A STD which
represents the behavior of the elevator movement is
given. The information extracted from this represen-

tation is shown in the final object module in Figure 7.

3.3.3 Information from Petri Nets

As we derive the frame of an object model from a
set of the DFDs, a set of Petri nets that specifies each
component {object or operation) is also used to ident-
ify behavior. Dynamic behavior of the objects can be
extracted from the Petri nets.

The interpretation of the Petri nets is similar to
that of the STD:the places and transitions corre-
spond to conditions and events/actions, respectively.
Since we use a set of Petri nets in which each Petri
net represents a component (an object or an oper-
ation), specifying the communication aspects between
objects from the Petri nets is difficull. Thus. we
extract the communication routines from the DFD

information.

3.4 Synthesize the input

Integration of the information of the three input
models is the critical step in this method. A frame
model, mainly extracted from the DFD. is constructed
with a set of objects and the primary operations. This
frame is the definition part of the module. The identi-
fication of active lype objects is very important, as we
regard thal only active object modules can exccule
concurrently by message passing (6]. After the objects
and operations are extracted from the DFDs. the
detailed behavior is specified by the STDs or the Petri
nets. For flexibility, we do not require both the STDs
and the Petri nets. The internal behavior and proper-
ties in the body part of each module are specified
with a generic format.

Integration rules are as follows. The integralion
process is performed with identification numbers
because each model’s component is denoted by its
own identification number. Since the DFD represents
the overall view of a system, information from the
DFD becomes a framework for other models. Thus
the internal representations for the Petri nets and the
state STD must contain extra facts which indicate the
relationship between them and the components of

DFDs. Moreover, internal representation of each



Petri net and each STD should have two identifi-
cation slots; one for itself and one for the relationship
with the DFD. For example, the fact, pconnect(/, p
_36, lelevaror]), in Figure § is introduced to show that
the Petri net which has identification ‘1’ is related to
the process 3.6 in the DFD. The connectivity between
the DFD and the STD is specified in the same way.

3.5 Generate an object-oriented specification

The object module format is shown in Figure 6.
This generic object specification model consists of two
parts :definition and body. In the definition part, the
environment and the frame of the object module are
specified. If the information is not available from the
input models, the frame is empty. The informal
requirements document, which is shown in Section 3.1,
can be used as comments to help the user. The input/
output data items of each object module are extracted
from the data dictionary. The information from the
DFDs is used to specify the definition part. In the
bod:. the message passing methods are identified with
send and accept operations. The internal behavior of
an object is specified with the CSP[7]-like format. The
syntax and semantics of this format is not included in
this paper. The body of an object module is specified
with the information from the Petri nets and the
STDs.

ObjectModule :: [ohject_name)
Definition_part is
object_type : {passive,active}
inherit : {class ohjects}
visible : {visible objects}
data_type : {data items}
method actioni { ):
Body_part is
accept {message) from [object): {accept a message}
send (message) to [chject]): {send a messags}
¥hen ==) actionl ( ):
o . ]
When => action2 ( ):

(Fig. 6) The general format of an object module
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In Figure 7, a list of the active objects and passive
objects and one of the object modules derived from
the elevator problem are illustrated. The final object
specification consists of a set of passive and active

object modules which are derived in the same man-

Active Dbjects : {Sensor] [Scheduler] [Manager]
Passive Objects : [door] [in_button] [ex_button]
[elevator] [request] [elevator_DB]

ObjectModule :: [elevator]
Definition_part is
object_type : passive
inherit :
visible : [Scheduler] [Manager]
data_type : K,.L := integer: {floor nusber, X { L}
method select ( ):
method sove _up { ):
method move_down ( ):

method stay { ):
Body_part is
accept (message) from [Scheduler]:
select ( ): --: The Scheduler selecta an

available elevator
--: Petri net for this part is not specified
accept (message) from [Manager]: --: The Manager
moves the elevator
When ==) sove up { ):
*[ {precondi tion: : ({In_button{K+1)=ON or
Up_button(K+1)=ON or Down_button(K+1)=ON) and atate =ANY)
set request floor(Kel)::
[‘ postcondition :: (Floor{K+l) requested and state=ANY)
8]
] {precondition :: ({In-button{L)=ON or Up_button{L)=ON or
Down_button{L) =ON) and state = ANY)
set request floor{L)::
postcondition :: (Floor{L) requested and state = ANY)}
[l

{precondition ::(Floor{K+l) requested sand Staying
floor(K) and atate =ANY)

sove up for floor(K+1)::
postcondition :: (Arriving floor(K+l) and Floor(K+l)
requested and state = MOVELP)}
0
{precondition :: (Floor(L) requested and Staying floor(K)
and state = ANY)

wove up for floor{L);:

postcondition (Arriving floor(K+1) and Floor(L)
requested and state = NOVELP)}

0

{precondition (Floor(K+1) requested and Arriving

floor{K+1) and state = MOVELP)
stop at floor(K+l)::
postcondition :: (Staying floor(K+1) and state=STANDBY)}

4]
{precondition::(Floor{L) requested and Arriving
floor(K+1) and state<MOVEUP)
stop at floor{L)::
postcondition :: (Staying floor(L) and state=STANDBY)]

When ==) move down { ):
--i no representation with Petri net
{precondition :: state = ANY
move down ::
postcondition :: state = MOVEDOWN}

Then ==> stay { ) --: no representation with Petri net
{precondition :: state = ANY
stop ::
postcondition :: state = STANDBY}

(Fig. 7) The object specification module of the elevator
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ner. An active object module acts as a monitor which
controls the execution of the passive object modules
and executes in parallel with other active object

modules.

4. Summary

This paper addresses the formal specification of
distributed systems. It presents an object-oriented
specification method that consists of analyzing
requirements from multiple modeling formats and
integrating them into a high level specification model.
There is a general lack of supporting tools and
methodologies to assist the specifier with the assist-
ance for writing formal specifications. We have devel-
oped a method to help address this problem by pro-
viding automated support that has the potential to
provide assistance for large-scale software develop-
ment. The method provides flexibility as it does not
require all three input models but has the capability
to integrate all three models. The DFD is the mini-
mum requirement for this method.

The major advantage of this method is that it
provides an environment that includes a partially
automated technique which helps to save time to
eliminate inherent mistakes that happen during the
manual process. In addition, by establishing a knowledge
base, the method becomes a semi-automatic method
and potentially provides the support for large-scale
software development. Moreover, it contains a technique
to integrate the different models of the system. In the
general case, multiple modeling techniques are used in
order to represent a system from different viewpoints.
However, for the design of the system, there is a need
for a method that can combine the requirements, in a
well-defined manner, from the different models to
produce an integrated specification. Another contri-
bution of this method is that it is useful as an assist-
ant for the novice system specifier who is not familiar
with the object-oriented development techniques by

converting functional-oriented representations into an

object-oriented representation.

In [18], most of currently developed OOD methods
and techniques are analyzed and the result of the
analysis is summarized in the table. This method is
the extension of the Lee&Carver's method |[9].
Compared to other OOD techniques such as OMT
and BOOCH's method. this method emphasizes the
process of the objects and operations from the
well-known functional modeling approaches rather
than representation. Even the OMT is widely known
and used in now. it does not support the technique
how to identify the appropriate objects and other
information. The main difficulty in OOP is identifying
the objects and their related information.

A formal specification language which is appropri-
ate for this method is under development. This
language should provide for the formal specification
of the characteristics of distributed object-oriented
systems. An unavoidable constraint of the method is
that the final specification model is dependent on the
input models, that is, errors or incompleteness in the
input models result in an incomplete or erroneous
object model.
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