IM EZE Z2|2-LEI0ICI0 M HHEAHO| 75 EA 399

A EF =2 R-dEjrvo] A TR

7)1 S

ISO/IEC JTC1/SC24 & AFH 2d YL ZEE B3ste AU ot} o] |43 72 RE3te
M2 e adg s §29 PREMOE 7Astn @A Adagde]l isFolct. PREMOE $8¢] 2d4g X #&3
ga] 2o A9 &4 HElntlo] AX) R5E Ao FHHRAL AFTsted 2 £E F2 U B =80l F
A5 A "olA, PREMO2] #1578 A28 CD @AM AEZ 0|1, A3 WDEA, AT A
AT} & =F-& PREMO7} 2% 753 E4& AAlste gl

Functional Characteristics of PREMO-An ISO
Standard for Presentation Environments for
Multimedia Objects-

Min-Hong Kim ' - Ha-Jine Kimn '’

ABSTRACT

ISO/IEC JTC1/SC24 is responsible for the development and maintenance of computer graphics standards. This
subcommittee recognized the need to develop a new graphics standard, and launched a new project named
PREMO which stands for Presentation Environment for Multimedia Objects. As the name implies, PREMO is
intended to address not only graphics but also multiple media presentation using object concepts and a new formal
description techniques. At the time of writing this paper, Part 1 and Part 2 were in the stage of Committee Draft
and Part 3 is a Working Draft. The Part 4 is at an earlier stage within ISO/IEC. This paper is to present the
procedures and works taken to develop PREMO.

1. Introduction GKS, a series of complimentary standards addressing
different areas of computer graphics followed. Those

The first international standard for computer graphics are PHIGS, PHIGS PLUS, and CGM. Quite recently,
was GKS published in 1985, After the emergence of GKS has been revised to support 3D (GKS-3D). In

spite of significant differences in their functionalities,

) w A }al 3} 2
T; 3 ;} %323;{5 ;gg%gj §£ these standards share a common architectural simi-

=24 5019954 109 10, AAMSE 19963 19 18Y larity-libraries of a set of predefined functions-. These

400 stnyZX2IEE =FX M3 H 25(96.3)

standards, however, have little chance of providing
appropriate answers to the rapidly changing today's
computer graphics technology.

The subcommittee (ISO/IEC JTC1/SC24) responsible
for the development and maintenance of computer
graphics standards recognised the need to develop a
radically new standards. To this end, a new project
was launched at an SC24 meeting in Chiemsee,
Germany, in October 1992. Subsequent meetings
resulted in a Draft for a new standard called PREMO
(Presentation Environment for Multimedia Object).
This new work was approved by ISO/IEC JTCI in
February 1994, and is now a major ongoing activity
in ISO/IEC JTC1/SC24/WG6.

PREMO concentrates on presentation techniques,
and this differentiates it from other multimedia
standardization projects. The purpose of this paper is
to present the the functionality of PREMO and some
of its characteristic features different from foregoing
standards. This paper is organized as follows. After
introducing the emergence of PREMO, the requirements
for a new graphics standard are presented in section
2, and section 3 describes functional architecture of

PREMO. Concluding remarks are given in section 4.

2. Requirements for PREMO

The first generation graphics standards have served
the graphics community well in a variety of ways. In
the mean time, application areas and technologies
have evolved so much that a big step forward in
graphics standards is urgently needed.

Traditional computer graphics system and graphics
applications have primarily been concerned with what
might be called the presentation of synthetic graphics,
that is, displaying pictorial information, typically on a
screen or paper. New technological trend has evolved
to the point that the computer graphics has become
an inherent part of most applications.

In general, aims of any two presentations may be

very different. For example, one might expect

photorealistic images using very complex models
describing the reality (e.g., commercial films, or high
quality animation) while the other needs ergonomically
sound and easy-to-grasp images of complex computed
or measured data (e.g., scientific visualization, or
medical imaging). In addition, many applications use
multiple presentation of media simultaneously.

This has resulted in a wide diversity and a large
number of requirements. This new standard is intended
to adequately satisfy the presentation requirements of
such diverse application areas as:

a)medical imaging,

b) CAD/CAM,

¢) virtual reality,

d) geographic information system,

e) entertainment,

f)real-time command control systems,

g)education/training, and

h) simulation ;
and such presentation techniques as:

i}animation,

j)simultaneous use of multiple media,

k) user interfaces,

D scientific visualization,

m) data exploration, and

n)realistic rendering (including various dimensio-
nalities, such as 2D, 2.5D, 3D, and integrating vari-
ous media, such as video, sound, and other non-visual
data).

This new standard, PREMO, will provide a com-
mon underlying functional nucleus to support these
application areas and techniques, as well as future
areas and techniques. Those requirements could be

characterized in three categories as follows :

o the acceptance of new media;
e the needs for extensible and configurable graphics
packages,

¢ the adaptability to distributed environments.

These requirements have shaped the architecture of

PREMO and also support interaction among appli-

cation areas and presentation techniques.

2.1 Integration of media

Technological developments have resulted in new
applications where traditional graphics alone cannot
satisfy the requirements. Examples of applications
where video, still images, and sound, etc., and syn-
thetic graphics coexist are very common. It is there-
fore a natural consequence to have development
environments that can support the presentation of
different media in a consistent way, and which allow
for the various media-specific presentation techniques
to coexist within the same system. Integration is
rather preferable than simple coexistence. It should be
possible to describe media objects integrated with
geometry and with one another, and also to describe
and control their mutual influence.

The complete integration of various media and
their presentation techniques within the same consist-
ent framework is one of the major goals of PREMO,
and one of the features which will make it very differ-

ent from earlier SC24 standards.

2.2 Extensibility

PREMO is extensible in that it makes provisions
for extending the functionalities specified. In particular,
additional part of this standard may be developed to
respond to the needs of specific application areas.
Users of PREMO would be able to integrate their
own extensions. The mechanism used to produce
extensions in PREMO is defined so that its use does
not adversely affect the portability of applications.

Different application areas have specific presen-
tation requirements which are exclusive to that appli-
cation area, e.g., simultaneous use of multiple media,
simulation and animation. Fundamental extensions
which are exclusive to an application area are speci-
fied in a standard way including considerations relating
to compatibility, portability, and interoperability.

Many aspects of PREMO are extensible by an

M BE Dol HEIO|CI 24 ESEA0| 7|5 &4 401

ISO-administered registration mechanism, so that a
uniform description of the extension is available to all
implementations. This differs from application-specific
extensions since the latter may not go through an ISO

registration process.

2.3 Configurability

There is a need for configurability because different
application areas have different demands in presenting
data. It is almost impossible to find a universal pres-
entation technique that satisfies the needs of all
application areas. Even though this could be done,
this approach would result in a large and cumbersome
mechanism instead of being a handy tool. Applications
that need only linear data structures should not be
forced to carry the burden of hierarchical or even
more complicated data structures. Conversely, specialized
data structures are required in some applications and
can be provided by PREMO.

PREMO solves these problems through a configurable
system design. The system offers a framework where
various object types (modules in conventional sense)
can be identified.

In a configurable system, the user is free to choose
object types according to the special needs of particular
applications. The advantages of a configurable system
are:

a) Applications do not reference the whole system
but only the specific object types they require.
For example, an application might need only
audio or video object types.

b) When introducing new techniques, such as
shading within the graphics pipeline, or a special
purpose graphics data storage; there is no need
to implement a completely new graphics system
for the realization of these new approaches. They
can be integrated as new object types that fit

within the existing framework.

2.4 incremental, separable development
PREMO is described and structured in such a way

402 HRFPXLIED =X M3D M 25(9.3)

that it can be developed incrementally to cope with
newly emerging requirement. Further, it is possible to
develop parts of the standard in an evolvable manner.

PREMO envisages a broad scope of functionality
which cannot be covered by a single activity. There-
fore this standard is designed as a multipart standard.
At the time of this writing, PREMO is divided into
four parts. The first part deals key concepts, describes
the overall architecture of PREMO, and specifies the
common semantics for specifying the externally visible
characteristics of PREMO objects in an implementation-
independent way. The second part defines objects that
any conforming PREMO implementation shall support.
The third part defines a Modelling, Rendering, and
Interaction component which is targeted at providing
paradigm independent support for high-level model-
ling and rendering, enhanced by time control and
interaction. The fourth part defines a Multimedia
Systems Services component which provides an infra-
structure for building computing platforms that sup-
port interactive multimedia applications dealing with
synchronized, time-based media in a heterogeneous
distributed environment. Further parts are anticipated
that will be appropriate for specific application areas

such as VR, audio, tactile or olfactory.

2.5 Simplicity

Aspects, such as portability and maintenance, are
greatly enhanced by keeping the underlying concepts
simple. Simplicity means that PREMO is based on a
general framework under which various sets of objects
may be utilized. Objects are defined in terms of their
externally visible behavior, thereby hiding implemen-
tation details. Hierarchical structuring of objects is
possible allowing more complex things to be assembled

from simpler parts.

2.6 Ease of use

PREMO is easy to use for the following classes:

a)end users:who work with applications based on
PREMO:

b) programmers: who use PREMO components to
build applications;

c)vendors:who develop, sell, and service the
implementations of PREMO;and

¢)system administrators:who control and manage
multimedia systems.

It is possible to tailor a PREMO implementation to
the minimum requirements to fit a particular appli-
cation. PREMO is structured as a collection of inde-
pendent components so that the programmers need to
learn only about those components required for their
application. PREMO supports the definition and
registration of collection of objects. The use of object-

oriented technology helps to achieve these goals.

2.7 Distributed environment

PREMO aaopls object-oriented design philosophy
while it is not the goal itself. This allows the construc-
tion of graphics data structure to be described same
as the application programmer’s perception. Program-
ming thus can be more easier and understandable.
PREMO supports distributed co-operative applications
and users. It supports the management of shared
resources and the development of distributed appli-
calions. Object-oriented technology also provides a
framework to describe distribution in a consistent
manner. Objects can be considered as closed entities
which provide “services” via their methods. From the
point of view of the object specification, it is imma-
terial how an object method is realized within the
same program or via calls across a network. Since
PREMO supports distributed applications, as well as
multiple processor implementations, the invocation of
PREMO operations may involve communication.
Objects can learn of each other’s existence and invoke
each other’s operations. Synchronization should be
provided, since two objects could request the same
operation in an overlapping fashion. Communication
among PREMO objects and between PREMO objects
and their client applications requires the use of under-

lying support facilities that are not addressed in this

standard.

3. Functional architecture

The functional architecture is a conceptual description
of the PREMO functionality. It identifies the functional
areas common to all media components, but possibly
having different realization in each environment. The
functional architecture explains the nature of the rules
for components such that they can be combined and
linked to other standard or non-standard components.

3.1 Description techniques

In the past, the graphics standards community have
employed formal methods in only avry limited way.
The semantics of the first generation computer
graphics standards, such as GKS and PHIGS, were
described using natural language, and in some cases
this has meant that ambiguities have been unnecess-
arily included in the specifications. The PREMO RG
planed to solve this problem by employing formal
description techniques at an early stage and to con-
tinue this activity throughout PREMO development.
This activity started after the July 1993 PREMO
meeting by appointing a Special Rapporteur for Formal
Description Languages and some early results are
documented.

PREMO functionality is described in terms of
object behavior. Each PREMO object is specified by
giving:

a)a definition of its interface:

bla complete description of the object’s behavior

which is only visible through its interface.
(Descriptions of the object’s behavior, using for-
mal description techniques, are developed and
published separately recommending the use of
Object-Z.)

3.2 Object model
PREMO uses an object model to support design

portability and reuse of object definitions. The use of

=R EF Z2|2-LEIDICIO M BB 75 S4 403

an object-oriented design leads to a natural descrip-
tion and provides, in particular, a way for explaining
PREMO’s extensibility and configurability aspects.
Although the PREMO object model defines types and
operations as concepts, systems that conform with the
model need not provide objects that correspond to
these concepts.

The PREMO object model is based on traditional
concepts: objects,
object types, and subtyping. An object can model any
kind of entity. A basic characteristic of an object is its
distinct identity, which is immutable, persists for as
long as the object exists, and is independent of the

properties and behavior of the object.

3.2.1 Object types

Objects are created as instances of object types (e.
g., person, color, segment). An object type defines the
behavior of its instances by describing operations that
can be applied to the object. Object types can be
related to one another through supertype/subtype
relationships. Subtyping is a relationship between
types, based on their interfaces. It defines the rules by
which objects of one type are determined to be
acceptable in contexts expecling another type.

For example, type B is a subtype of type A, if B is
a specialization or a refinement of A. Inheritance is a
notational mechanism for reuse of operation. If type
B inherits from type A then the definition of B
inherits all the operations of A and may provide
other operations(ref. Fig. 1). All these notions are
well-known and are described in other publications:
consequently, the details are not described here.

Although subtyping and inheritance are defined
separately, the PREMO object model explicitly states
how they are related. Indeed if B is declared to be a
subtype of A, then B also inherits from A. The
PREMO object model supports both multiple supertypes
and multiple inheritance. As described above, subtyping
and inheritance provide the basic mechanism in

PREMO for extensibility and configurability.

404 StnFyEX BT =2 M3 M 25(96.3)

A
A A

(Fig. 1) Type graph

3.2.2 Operations

Operations are applied to objects. An operation
describes an action that can be applied to an object
via parameters. An operation invocation, called a
request, specifies the operation and parameters. The
operation associated with an object collectively
characterize its behavior and has a signature which
consists of a name, a set of parameters, and a set of
return values.

The set of operation signatures defined for a type is
called the interface of that type. The interface
includes signatures that are inherited from supertypes.
The interface of a type can be applied to all instances
of that type.

3.2.3 Operation request

The external behavior of PREMO objects is based
on the operations defined for the object. Requests for
operations provide the only means of information
transfer among PREMO objects. There is only one
form of operation request. All requests are delivered
at most once to the object.

Internally, an object has a finer control over the
actions it has to perform to service the request. Each
operation has an operation receptor, and an operation

request amounts to puiting a request into this receptor.

The receptor of an operation may be in one of three
modes : synchronous, asynchronous, or sampled. This
mode is specified as part of the operation specifi-
cation and immutable during the lifetime of the
object. The default mode is synchronous. The intuit-
ive meaning the three modes are as follows:

—If the operation receptor is synchronous, the
caller is suspended until the callee has served the
request. Data may be associated with the request,
and the request may have return values.

— If the operation receptor is asynchronous, the
caller is not suspended, and the request is queued
on the callee’s side. Data may associated with
the request, but no return value is allowed in this
case.

— If the operation receptor is sampled, the caller is
not suspended, but the service requests are not
queued on the callee’s side. Instead, the respective
requests will overwrite one another as long as
the callee has not serviced the request. Data may
be associated with the request, but the request
shall not have return values.

The unusual feature of this model is the introduc-
tion of sampled messages. But this feature is not
unusual in computer graphics. Consider the well
known idea of sampling a logical input device. e.g.,
locator position values. A locator can send thousands
of motion notification messages to a receiver object,
and the latter can just “sample” these messages using

the sampled message mode.

3.2.4 Operation dispatching

An operation request specifies the operation and
the parameters possibly causing results to be returned.
When an operation request is issued, a specific oper-
ation implementation is selected for execution. This

selection is called operation dispatching.

If the signature of an operation Q is:

WX 161, X210, X0) > (Y11 Y21 P2 Y| Pm)

where w is the name of the operation. The operation
signature specifies parameters with names x; and types
g; and results with names y; and types pi. And, say, o;
is of type refA where A is an object type, and B is a
subtype of A, the actual parameter x; is permitted to
be of type refB when invoking the operation w.

An example is in Fig. 2. A and B are PREMO
object types, and B is a subtype of A. The operation f
is defined both in A and in B, ie., both types provide
an implementation for this operation. The two
implementations will be denoted by A. f and B. f
respectively. Let P be another PREMO object type,
and p an instance of this type with operation q. The
parameter list of q should include one of type refA.
The operation p.q may be invoked with actual
parameters of both refA and refB.

P
Lt
B
{
U
A
f
P
-
B
f
b

(Fig. 2) Operation dispatching

M EF T2|2-ZE(OICIO) M Z3EHQ| 7|5 &4 405

3.3 Component

A component in PREMO is a collection of object
types and non-object types. Objects within one
component are designed for a cooperation and offer a
well-defined set of functional capabilities for use by
other objects outside the component. A component
offers a set of services and may also require services
from other components. Components may also be
defined by individual applications and be used as sets
of objects directly linked to an application. A
component also defines its dependencies on other
components. For example, a component 8 may
depend on other component « in two ways:

a)there are objects in # whose types are subtypes
of object defined in a;

b) there are objects in # whose behavior depends on
the availability of services offered by service
object instances of objects defined in component
o.

A component specification shall list all other
PREMO components it depends on, and in which of
the two ways listed above. The two ways of
dependencies are not exclusive, and so, objects may
rely both on the existence of services and may also
inherit from the object types defined within the same

component.

4. Conclusion

PREMO is a standard which is in progress.
According to the timetable, the final text for an Inter-
national Standard is scheduled by June 1997. As is
mentioned in the introduction, we very briefly studied
the characteristic features in PREMO. Formal
description techniques based on Z and Object-Z,
object model adopted from object oriented conceplts,
and incremental development policy are unique
features in PREMO different from other graphics
standards developed in SC24. In the process of
developing PREMO, there still remain many open
issues such as time and synchronization, the concept

of quality of service. etc., unresolved.

406 SIRHEKCIET| =2X MIH K 22(96.3)

References

[1] ISO, Information processing systems-Computer
graphics-Graphical Kernel System (GKS) func-
tional description (ISO IS 7942). Geneva, 1985.

[2] F. R. A. Hopgood et al., “Introduction to the
Graphical Kernal System (GKS)”, Academic
Press, 1986.

{3] D. B. Arnold and D. A. Duce, “ISO Standards
for Computer Graphics:The First Generation”,
Butterworths, 1990.

[4] G. Enderle et al., “Computer Graphics Program-
ming-GKS-The Graphics Standard”, Springer-
Verlag, 1984.

[5] 1SO, Information processing systems-Computer
graphics-Metafile for the storage and transfer of
picture description information (ISO IS 8632).
Geneva, 1987.

[6] 1SO, Information processing systems-Computer
graphics-Programmer’s Hierarchical Interactive
Graphics System (PHIGS) (ISO IS 9592). Geneva,
1988.

[7] 1SO, Information processing systems-Computer
graphics-Programmer’s Hierarchical Interactive
Graphics System (PHIGS)-Part 4, Plus Lumiere
und Surfaces (PHIGS PLUS) (ISO DIS 9592-4),
1991.

[8] ISO, Information processing systems-Computer
graphics and image processing-Presentation Envi-
ronment for Multimedia Objects (PREMO) (ISO/
IEC CD14478) July 1994.

[9] G. J. Reynolds et al., “Report of the ISO/IEC
JTC1/SC24 Special Rapporteur Group on Formal
Description Techniques”. ISO/IEC JTCI1/SC24
N1152, 1994.

[10] R. Duke et al., “The Object-Z Specification
Language” ver. 1, University of Queensland, 1991.

{11] J. M. Spivy, “The Z Notation: A Reference Man-
ual”, 2nd ed.. Prentice Hall Int'l, 1992.

[12] D. A. Duce et al., “Formal Methods in the

Development of PREMO”, CWI, 1994.

[13} I. Herman et al., “PREMO: An ISO Standard for
a Presentation Environment for Multimedia
Objects”, Proceedings of the Second ACM Inter-
national Conference on Multimedia. ACM Press,
1994.

g4 2 =
19633 gt F st
218 g g2l (&HAL.
1977d AR 71&AL
1978%d mediste FGohEd
A r) (A AD.
19931 d ©] & Colorado th 3}
B,
1996 opFhata wh st HFFE]-F 8T A}).
1981 d~8A A7thate ol g A xpAILbeH
g

B ok: FAAA, TRV & BE3 T

a ot Z

196213 Aedidtn 72l st
483} (0] B4},

19781 Grenoble 1 i3tz o
39 853874 D. E
A. (o} 84,

1980%3 Saint-Etienne th &t of
gtel &4 8kt (o8
HhA}),

198413~1985d L2 INRIA Z2H a4

1989%1~1992'3 &= Y B 738t s 3.

199311~1995'd o}t & 3 ool & g

19743~ olFdiatuw Fost FFE N

=y
Al Bob: AFE 1 A, FAHY 5

