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A Programmable Electronic Systems Dedicated
to Safety Related Applications
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ABSTRACT

A low complexity, fault detecting computer architecture for utilisation in programmable logic
controllers is designed. The cyclic operating mode of PLCs and a specification level, graphical
programming paradigm based on the interconnection of application oriented standard software
function modules are architecturally supported. Thus, by design, there is no semantic gap be-
tween the programming and machine execution levels enabling the safety licensing of application

software by an extremely simple, but rigorous method, viz., diverse back translation.

1. Introduction

In society, there is an increasing awareness
of and demand for dependable technical
systems in order not to endanger human lifes
and to prevent environmental disasters. Com-
puter based technical systems, which are in-
creasingly being applied for both control and
automation functions under real time con-
straints to enhance flexibility and productivi-
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ty, have the special property and they consist
of hardware and software. Hardware is sub
ject to wear and faults occurring at random,
which may be of a transient nature. These
sources of non-dependability can (to a very
large extent) successfully be coped with by
applying a wide spectrum of redundancy and
fault tolerance methods. The advent of the
VIPER microprocessor [5], the correctness of
whose design was formally proven, signifies a
leap forward in the direction of eliminating
design errors in programmable electronic
systems as well. In software, on the other
hand, there are no faults caused by wear, en-
vironmental events etc. Instead, all errors are



design errors, i.e, of systematic nature, and
their causes are always (latently) present.
Hence, dependability of software cannot be a-
chieved by reducing the number of errors
contained by testing, checks, or other heuris-
tic methods to a low level, which is generally
greater than zero, but only by rigorously
proving that it is error free. Taking the high
complexity of software into account, only in
exceptional cases this objective can be
reached with the present state of the art.
Whereas other researchers have the general
situation in mind and, therefore, have to yield
to the complexity problem, it is our intention
to make an important step into the direction
of designing a workable and useful program-
mable electronic system, which can be safety
licensed in its entirety, by exploiting the in-
trinsic properties of a special, but not untypi-
cal case, that was identified in industrial con-
trol problems. Here the complexity turns out
to be manageable, because we restrict our at-
tention to rather simple computing systems in
the form of programmable logic controllers,
and since application domains exist demand-
ing software of limited variability only, which
may be implemented in a well structured
way by graphically interconnecting carefully
designed and rigorously verified “software
ICs". Despite the mentioned restrictions of
generality, the here described work s
scientifically relevant and technologically use-
ful, since its application area comprises the
above mentioned technical systems in charge
of safety critical control functions.

There are already a number of established
methods and guidelines, such as IEC 880 [3],
which have proven their usefulness for the
development of high integrity software em-
ployed for the control of safety critical tech-
nical processes. Prior to its application, such
software is further subjected to appropriate
measures for its verification and validation.
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However, according to the present state of
the art, these measures cannot guarantee the
correctness of larger programs with mathe
matical rigour. Moreover, prevailing legal re-
quirements demand that object code must be
considered for the correctness proofs, since
compilers-or even assemblers-are themselves
far too complex software systems, as that
their correct operation could be verified.
Therefore, depending on national legislation
and practice, the licensing authorities are still
very reluctant or even refuse to approve
safety related systems, whose behaviour is ex-
clusively program controlled. In general, safe-
ty licensing is denied for highly safety critical
systems relying on software with non-trivial
complexity.

To provide a remedy for this unsatisfactory
situation, the architecture of a customised
real time computer control systern is devel-
oped, which can carry out safety related
functions within the framework of distributed
process control systems and programmable
logic controllers. It explicitly supports se-
quence controls, since many automation pro-
grams including safety relevant tasks are of
that kind. The architecture features full tem-
poral predictability, determinism, as well as
supervision of program execution and of all
other activities of the computer system, and
supports the software verification method of
diverse back translation, whose utilisation
turns out to be very easy, economical, and
time efficient. The presented approach is
unique as the first effort to provide support
for software verification already in the archi-
tecture.

The leading idea followed throughout this
design is to combine already existing soft-
ware engineering and verification methods
with novel architectural support. Thus, the se-
mantic gap between software requirements
and hardware capabilities can be closed, relin-
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quishing the need for not safety licensable
compilers and operating systems. By keeping
the complexity of each component in the
system as low as possible, the safety licens
ing of the hardware in combination with ap-
plication software is enabled on the basis of
well established and proven techniques.

2. A Software Engineering Paradigm

Standardisation bodies of the Society for
Measurement and Automation Technology
and of the chemical industries in Germany
have identified and defined a set of 67 appli-
cation specific function modules suitable to
formulate-on a very high level employing the
graphical “Function Block Diagram” and “Se-
quential Function Chart” languages recently
defined by the IEC International Standard
1131-3 [4]-the large majority of the occur-
ring automation problems [9]. To give an im-
pression of these modules’ functionality, we
provide the following list :

Monadic mathematical functions
Polyadic mathematical functions
Comparisons

Monadic Boolean function

Polyadic Boolean functions

Edge detectors

Selection functions

Selection by 1 out of N bits
Counters, monostables, bistables, timers
Process input/output

Network communication input/output
Dynamic elements and regulators
Conditioning for display and operation

Written in the [4] high level language
“Structured Text”, these software modules
are usually quite short : their source code
does not exceed two pages. Therefore, their
correctness can be formally proven, eg.,

using predicate calculus, but also symbolic ex-
ecution or, in some cases, even complete test.
Note that the rather costly safety licensing of
a function module set needs to be carried out
only once, after a certain set has been identi-
fied and standardised for a given application
area. The licensing costs can be spread over
many implementations leading to relatively
low costs for each single automation project.
In order to give another typical example, the
programming of emergency  shut-down
systems, which is usually performed graphi-
cally in form of functional logic diagrams to
describe the mapping from Boolean inputs to
Boolean outputs as functions of time such as,
for instance,

if a pressure is too high

then a valve should be opened

and an indicator should light up after 5

seconds
even requires as few as only four function
modules, viz., three Boolean operators and a
timer. For an in-depth treatment of the func-
tion module concept we refer to [10].

The above mentioned analysis of process
automation suggests to introduce a new pro-
gramming paradigm, viz, to compose Soft-
ware out of high level user oriented building
blocks instead out of low level machine ori-
ented ones. Whereas a single machine instruc-
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(Fig. 1) A graphically formulated program



tion taken out of a program context does not
reveal its purpose, the occurrence of a cer-
tain function module instance usually gives
already a clue about the problem, its solution,
and the module’s role in it. Therefore, we se-
lect basic function modules as elementary
units of application programming. Essentially,
for any application area, there will be specif-
ic sets of basic functions modules, although
certain functions like analogue and digital
input and output have general relevance.

For the formulation of automation applica-
tions with safety properties, basic function
modules are only interconnected with each
other, ie, single basic functions are invoked
one after the other and, in the course of this,
they pass parameters. Besides the provision
of constants as external input parameters,
the basic functions’ instances and the param-
eter flows between them are the only lan-
guage elements used on this programming
level. The software development is carried
out in graphical form, using an appropriate
CAD tool : the instances of the basic func-
tions are represented by rectangular symbols
and the data flows are depicted as connect-
ing lines (Fig. 1). Then, a compiler trans-
forms the graphically represented program
logic into object code. Owing to the simple
structure, this logic is only able to assume,
the generated programs contain no other fea-
tures than sequences of procedure calls and
some internal moves of data.

This high -or even specification -level pro-
gramming method is very similar to the pro-
gramming language LUCOL [8], which was
specifically developed for safety critical appli-
cations. LUCOL modules correspond to the
basic functions and LUCOL programs are se-
quences of module invocations with data pass-
ing as well. This similarity could be utilised
to validate programs, which are produced by
interconnection of basic functions, since the
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validation tool SPADE [1] was already suc-
cessfully applied for this purpose[8]. SPADE
works especially well on procedures, which
are closed in themselves and possess well de-
fined external interfaces, such as represented
by basic function modules. Although the stat-
ic analyser SPADE and the comparable
MALPAS [7] have proven to be highly valu-
able tools, they cannot establish the correct-
ness of software on their own.

Fortunately, an -apparently still impossible
and, therefore, presently unavailable- safety
licensed compiler transforming graphical soft-
ware representation into object code is not a
necessary precondition to employ this high
level programming paradigm. The application
software may be safety licensed by subjecting
its loaded object code to diverse back transla-
tion, a verification method which was devel-
oped in the course of the Halden experimen-
tal nuclear power plant project [6]. This
technique consists of reading machine pro-
grams out of computer memory and giving
them to a number of teams working without
any mutual contact. All by hand, these teams
disassemble and decompile the code, from
which they finally try to regain the specifica-
tion. A safety licence is granted to a soft-
ware if its original specification agrees with
the inversely obtained re-specifications. Of
course, the method is generally extremely
cumbersome, time consuming, and expensive.
This is due to the semantic gap between a
specification formulated in terms of user
functions and the usual machine instructions
carrying them out. Applying the program-
ming paradigm of basic function modules,
however, the specification is directly mapped
onto éequences of procedure invocations. The
object code consists of just these calls and
parameter passing. It takes only minimum ef-
fort to interpret such code implementing just
module interconnections and to redraw graph-
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ical program specifications from it. If the im-
plementation details. of the function modules
are part of the architecture they remain in-
visible from the application programming
point of view and do not require safety li-
censing in this context.

The software verification method of diverse
back translation [6] is greatly facilitated by
the problem oriented architecture introduced
in the next section. Owing to the employment
of basic function modules with application
specific semantics as the smallest units of
software development, the effort for the
method’s utilisation is by orders of magnitude
less than in the cases reported by [2]. Fur-
thermore, the employed principle of software
engineering reduces the number of possibili-
ties to solve a given single problem in differ-
ent ways.

Therefore, it is considerably simpler to
check the equality of reversely documented
software with an original program. Finally,
tools for the graphical back translation of
memory resident programs are already part
of the standard support software of distribut-
ed process control systems, thus facilitating
the application of diverse back translation for
verification purposes.

Many automation programs including safety
relevant applications have the form of se-
quence controls composed of steps and transi-
tions. With our architecture we support linear

(Fig. 2} Sequential function chart

sequences of steps and alternative branches
of such sequences (Fig. 2). Parallel branches
in sequential function charts should either be
implemented by hardware parallelism or
already resolved by the application program-
mer in the form of explicit serialisation.
While in a step, an associated program,
called action, developed according to the
above paradigm is being executed. Also, for
purposes of a clear concept, of easy
conceivability and verifiability, and in order
not to leave the Petri net concept of se-
quence controls, we only permit the utilisation
of non-stored actions. All other types of
actions as defined in IEC 1131-3 [4] can be
expressed in terms of non-stored ones and re
-formulated sequential control logic.

3. A Safety Oriented Architecture

As architecture for our safety oriented pro-
grammable logic controller we select an
asymmetrical configuration of four processors
which consists of two pairs of master/slave
processors. For the envisioned purpose only a
very simple master processor with just two
instructions is required. Thus, the utilisation
of the diverse back translation method for
the verification of application software is
greatly facilitated. For most application areas
in process automation, the slave processor
must have general purpose capabilities. The
objective of our PLC suggests to employ the
VIPER 1A [5] chip in the slave, because the
VIPER is the only available microprocessor
whose design was formally proven correct,
and in its 1A version it supports fault detect-
ing operation in dual channel configuration.
The VIPER 1A provides, namely, information
on its current internal state at dedicated out-
put pins. If two of these processors operate
as a redundant pair synchronously executing
identical programs, each VIPER 1A is able to



continuously compare its internal state with
that of the other one. Both processors are
stopped upon a mismatch of states. In case a
new processor is developed to be employed as
slave, maximum simplicity and a minimum
application specific instruction set ought to be
emphasised. If possible, the instruction set
should then correspond to the low level IEC
1131-3 [4] programming language “Instruc-
tion List”, which essentially represents a sin-
gle address assembly language.

We assume that a technical process is to
be controlled by a distributed computer
system. First, all safety relevant hardware
and software functions and combonents are
clearly separated from the rest of the auto-
mation system and, then, also from each
other. Under any circumstances it should be
the objective in this process to keep the num-
ber of these functions as small as possible.
Each of the thus identified functions is as-
signed to a separate dedicated processor in
the distributed system [6].

Since it is not our objective to save hard-
ware costs, but to facilitate the conceivability
of the implemrented software and of its execu-
tion process, we design an architecture with,
conceptually, two processors:-a control flow
processor (master) and-a basic function block
processor (slave).

These two processors are to be implement-
ed by separate physical units. In fact, there
are even more processors to meet the fault
detection requirement. Thus, we achieve a
clear and physical separation of concerns : ex-
ecution of the basic function modules in the
slave processor, and all other tasks, i.e., exe-
cution control, sequential function chart pro-
cessing, and function module invocation, as-
signed to the master. This concept implies
that the application code is restricted to the
control flow processor, on which the project
specific safety licensing can concentrate.
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There is special architectural support for the
cyclic operating mode of programmable logic
controllers implemented in the master proces-
sor. To enable the detection of faults in the
hardware, a dual-channel configuration is
chosen, which also supports diversity in form
of different master processors and different
slave Processors. All processing is
simultaneously performed on two processors
each and all data communicated are subject-
ed to comparison. At least one of the master
processors should have the extremely simple
organisation described below. (Fig. 3) gives a
conceptual diagram of the master/slave PLC
architecture.

The basic function processor performs all
data manipulations and takes care of the
communication with the environment. The
master and slave processors communicate
with each other through two FIFO-queues.
They execute programs in co-ordination with
each other as follows. The master processor
requests the slave to execute a function block
by sending the latter’'s identification and the
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master/slave processors
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corresbo}]ding parameters and, if need be,
also the block’s internal state values via one
of the FIFO-queues to the slave processor.
Here the object program implementing the
function block is performed and the generat-
ed results and new internal states are sent to
the master processor through the other FIFO-
queue. The elaboration of the function block
ends with fetching these data from the out-
put FIFO-queue and storing them in the mas-
ter's memory. A number of fail safe compa-
rators checking the outputs from the master
processors before they reach the slaves and
vice versa completes a fault detecting two-
channel configuration.

In order to prevent any modification by a
malfunction, in our safety oriented architec-
ture all programs must be provided in read
only memories (ROMs). For practical rea-
sons, generally there will be two types of
these memories. There is no program RAM
at all. The code of the hasic function mod-
ules resides in mask programmed ROMs,
which are produced under supervision of and
released by the licensing authorities, after the
latter have rigorously established the correct-
ness of the modules and the correctness of
the translation from Structured Text into ob
ject code. On the other hand, the sequences
of module invocations together with the corre-
sponding parameter passing, representing the
application programs at the architectural
level, are written into (E)PROMs by the
user. This part of the software is subject to
project specific verification again to be per-
formed by the licensing authorities, which fi-
nally still need to install and seal the (E)
PROMs in the target process control comput-
ers. The master/slave configuration is chosen
to physically separate two system parts from
one another : one whose software only needs
to be verified once, and the other one per-
forming the application specific part of the

software.

In commercially available PLCs, the execu-
tion time for a step generally varies from
one cycle to the next depending upon the
program logic performed and the external
conditions evaluated each time. Therefore, the
measurement of external signals and the out-
put of values to the process is usually not
carried out at equidistantly spaced points in
time, although this may be intended in the
control software. To achieve full determinism
of the time behaviour of programmable logic
controllers, a basic cycle is introduced. The
length of the cycle is selected in a way as to
accommodate during its duration the execu-
tion of the most time consuming step occur-
ring in an application {class). It is supervised
that the execution time of a step does not
exceed this cycle period by awaiting, at the
end of the step's program processing and
after the evaluation of the corresponding
transition condition(s), the occurrence of a
clock signal, which marks the begin of the
next cycle. An overload situation or a run
time error, respectively, is encountered when
the clock signal interrupts an active applica-
tion program. In this case a suitable error
handling has to be carried through. Although
the introduction of the basic cycle exactly de-
termines a priori the cyclic execution of the
single steps, the processing instants of the
various operations within a cycle, however,
may still vary and, thus, remain undeter-
mined. Since a precisely predictable timing
behaviour is only important for input and
output operations, temporal predictability is a-
chieved as follows. All inputs occurring in a
step are performed en bloc at the beginning
of the cycle and the thus obtained data are
buffered until they will be processed. Like-
wise, all output data are first buffered and
finally sent out together at the end of the
cycle.



In th& sequel, we discuss the hardware

components

— master processor,
FIFO-queue,
comparator, and
system clock

of this special purpose computer in detail.
The complete fault detecting system architec-
ture is depicted in (Fig. 4).
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(Fig. 4) Fault detection master/slave PLC
architecture

The master processor executes the pro-
grams stored in its PROM memory. Besides
this program memory, the master's address
space also comprises a RAM memory and
various registers. The latter are:

1. the FIFO—input register,

2. the FIFO—output register,

3. two step registers, viz., step

and step initial address, and

4. the transition condition register.

Furthermore, it has a program counter
(PC) and a single bit step—clock—occurred

identifier

register, which are not accessible to the pro-
grammer. The master processor performs two
machine instructions only, viz.,

— MOVE and STEP.

The instruction format is shown in (Fig.
5). The PROM address of an instruction to

be executed is given by the PC. The instruc-
tion type is identified by the instruction
word’s first bit.

Operand A | Operand B

(Fig. ) Instruction Format

The MOVE instruction has two operands,
which directly address locations in the
address space of the processor. Thus, the
memories and the above mentioned registers
can be read and written. A read from the
FIFO-input register implies that the processor
has to wait when the input FIFO-queue regis-
ter is empty. In case of writing into the out-
put FIFO-queue register, the processor also
has to wait when the register is full. Execu-
tion of a MOVE implies incrementation of the
program counter.

The STEP instruction does not have oper-
ands. Since designed for the implementation
of PLCs, the programs executed by the mas-
ter processor consist of sequences of steps.
Behind the program segment of each step a
STEP instruction is inserted, which checks
whether the segment was executed within a
step cycle frame or not. The step cycle is a
periodic signal generated by the system clock
and éstablishing the basic time reference for
the PLC operation. If the execution of a seg-
ment does not terminate within a step cycle,
an error signal i1s generated and the program
is stopped. Normally, segment execution ter-



446 BRYD XIS RESE| =2 M1 H4E (94 1)

minates before the instant of the next step
cycle signal. Then the processor waits until
the end of the present cycle period.

When the clock signal finally occurs, ac-
cording to the contents of the transition con-
dition register it is decided whether the step
segment is executed once more or whether
the execution of the logically subsequent step
is commenced, ie., whether the program
counter is re-loaded from the step-initial-
address register or if another segment's initial
program address is read from a memory lo-
cation called next-step-address. Since pro-
gram branching is only possible in this
restricted form, erroneous access to code of
inactive steps is prevented, thus representing
a very effective memory protection mecha-
nism.

The design objective for providing the
FIFOs is to implement easily synchronisable
and understandable communication links,
which decouple the master and slave proces-
sors with respect to their execution speeds.
The FIFO-queues consist of a fall-through
memory and two single bit status registers
each, viz., FULL and EMPTY, which indicate
the filling states of the FIFOs. The status
registers are not user accessible. They are set
and reset by the FIFO control hardware and,
if set, they cause a MOVE to a FIFO's input
port or from an output port, respectively, to
wait until space in the FIFO becomes avail-
able or data arrives.

The comparison for equality of the outputs
from the two master processors and of the
inputs from the two slave processors,
respectively, is carried out by the two compa-
rators placed into the FIFO-queues. Since the
responsibility for detecting errors in the
system lies on these comparators, they need
to meet high dependability requirements and
must, therefore, be implemented in a fail safe
technology. A comparator is connected to

four FIFOs, two at its input and two at its
output. The first data elements from each
input queue are latched and subsequently
compared with each other. If both latches do
not hold the same value, then an error signal
is generated, which stops the operation of the
entire system. Otherwise, the value is trans
ferred into both output FIFOs. The compari-
son of FIFO data is shown in (Fig. 6).

data
available

FIFO FII‘O
.
H
H

(Fig. 6) Comparison of FIFO data

The system timer generates, besides other
periodic signals required for the operation of
the hardware, a step cycle clock. This period-
ic signal marks the time frames dedicated for
the execution of all steps (in the sense of
PLCs). The step cycle is also applied to set
the step-clock-occurred register. (Fig. 7)
shows the basic timing diagram for the com:
plete system.

To the end of redundant hardware support
and supervision of the sequential function
chart control structures we provide the fol-
lowing measures in our safety related archi-
tecture. The identification of the step active
at a given time is kept in a separate regis
ter, which is especially protected. The regis-
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(Fig. 7) Basic timing diagram



ter's contents is displayed on an external op-
erator's console.

Our PLC communicates with external tech-
nical processes through fault detecting input/
output ports (cp. (Fig. 8)) attached to the
slave processors. Output data words generat-
ed by the two slaves are first checked for
equality in a fail safe comparator and, subse-
quently, they are latched in an output port.
If output data are not identical, then an
error signal is generated leading to a system
stop. Output is not enabled, i.e., does not be-
come effective to the environment, before the
step-clock-occurred register is set by the step
cycle signal. Also input data words arriving
from the external technical process are first
latched in an input port. With the next step
cycle signal they are made available for input
to both slave processors.

Output Port:
iny ing

| !

comparstor

l

latch

error stop on £

use ac | as latch enable l

il step-clock-occurred=0
out

Input Port.

use s¢ | as output enable t
if step-clock-occurred=0
in

(Fig. 8) Output port and input port

4, A Software Development Environment

A set of tool prototypes was developed
supporting vendor independent graphical pro-
gramming of PLCs. In the sequel we give a
survey on the functionality of these tools,
which are aimed at facilitating methodical
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and structured top-down design, design in the
conceptual phase, and setting up libraries of
well tested standard modules for single proj-
ects or classes of projects.

When new software is to be developed, ap-
plication programmers use CAD tools to set
up drawings of function blocks and sequential
function charts. In particular, they fetch ap
propriate graphical objects from libraries,
place them in worksheets, and link, according
to given logic, connectors to these objects.
After the drawing process is complete, the
worksheets are stored and then submitted to
utility programs of the CAD tools, which gen-
erate lists of all objects and all interconnec-
tion nodes occhrring in the drawings, so-
called net lists. These lists constitute textual
representations which are fully equivalent-but
for geometrical aspects-to the original draw-
ings. Then, the lists are submitted to a fur-
ther postprocessor, viz., a compiler, generat-
ing code in the IEC language Structured
Text. In particular, the compiler produces
complete program units with declarations of
input, output, and local variables, of tasks,
and of instantiated function blocks, with call-
ing sequences of functions, function block in-
stances, and tasks, and with encoded descrip-
tions of steps, transitions, and actions. The
texts of these program units are stored in li-
braries, which, of course, could also be filled
by text editors with hand coded modules.
These text elements serve as input for the
final postprocessor, i.e., a translator, that gen-
erates object programs for our architecture.
Due to the restricted form the source pro-
grams are only able to assume, the translator
produces calling sequences to and parameter
passing between the user invoked functions
and function blocks, the object code of which
is contained in system firmware ROMs of the
slave processor.

For documentation and verification purpos-
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es, functions and function blocks are also
coded in the language Structured Text and
stored in a text library. In order to save a
further editing step needed to set up entries
for the graphical library of a CAD tool, it is
desirable to have a tool available which
automatically generates from the modules’
source codes corresponding graphical symbols
to be used in the drawing process. Therefore,
a further tool was developed, which interprets
the name and the input and output declara-
tions of a function or function block in order
to generate the textual description of an ap-
propriately sized graphical symbol. The output
of this tool is finally subjected to a utility of
the CAD system used, which translates the
descriptions into an internal form and places
the latter into its component library.

5. Software Safety Licensing

Using the tool set described above, it is as-
sumed that all elements of an employed func-
tion block set contained in a library were
first vernified with appropriate formal meth-
ods. Hence, for any new application program,
only the proper implementation of a particu-
lar interconnection pattern of invoked func-
tion block instances needs to be verified. For
this purpose we subject the object code load-
ed into the master processor to diverse back
translation [6], because our tool set contains
a number of high complexity utility and com-
piler-like programs, whose correctness cannot
be established rigorously. Although it may be
considered as a rather non-elegant brute
force method, diverse back translation is es
pecially well suited for the verification of the
correct implementation of graphically specified
programs on the architecture introduced
above. This is due to the following reasons:

— The method is essentially informal, easi-
ly conceivable, and immediately applicable

without any training. Thus, it is extremely
well suited to be used on the application pro-
gramming level by people with the most
heterogeneous educational backgrounds. The
ease of understanding and use inherently fos-
ters error free application of the method.

— Since graphical programming based on
application oriented function blocks has the
quality of specification level problem descrip-
tion, and because by design there is no se-
mantic gap in our architecture between the
levels interfacing to humans and to
themachine, diverse back translation leads
back in one easy step from machine code to
problem specification.

— For our architecture, the effort required
for the utilisation of diverse back translation
is by several orders of magnitude smaller
than for the von Neumann architecture.

As already its name implies, diverse back
alranslation is a verification method to be
carried out with diverse redundancy. Original-
ly, this called for different teams of human
inspectors. Since in the case considered here
there is only one rather simple reverse trans-
lation step, we are optimiétic that the licens-
ing authorities will eventually accept the fol-
lowing procedure. Verification by back trans-
lation is carried out by a number of different
programs, which should be proven in practice,
but do not need to be formally verified. Such
programs are to yield graphical outputs. An
official licensor performs the back translation
as well, compares his results with the ones of
the verification programs on one hand, and
with the original graphical application pro-
gram under inspection on the other, and,
upon coincidence, issues a safety licence.
Such a procedure is in line with the
dependébility requirements for diversely re-
dundant programs demanded by the licensing
authorities and necessitates only the minimum
of highly expensive human involvement, viz,




one licensor, who is always indispensable to
take the legal responsibility for
safety licence.

issuing a

6. Prototype Implementation

Employing VIPER 1A microprocessors, we
have built a prototype of the PLC architec-
ture described. Its utilisation in practice
showed that implementing the functionality of
a hard wired emergency shut-down system
with our PLC architecture is feasible, and
that the programming paradigm based on for-
mally verified function modules can render
error free software. The latter together with
a fault detecting hardware platform allows to
implement programmable safeguarding
systems sharing the fail safe feature with the
well established hard wired solutions.

7. Condlusion

Economical considerations impose stringent
boundary conditions on the development and
utilisation of technical systems. This holds for
safety related systems as well. Since man-
power is becoming increasingly expensive,
also safety related systems need to be highly
flexible, in order to be able to adjust them to
changing requirements at low costs. In other
words, safety related systems must be pro-
gram controlled. Thus, we expect that the
use of hard wired safety systems will dimin-
ish in favour of computer based ones.

In our society there is a growing concern
for safety (which comes hand in hand with
the increasing awareness for the environ-
ment). This has important consequences for
the assessment of computer controlled
systems. One has begun to realise the inher-
ent safety problems associated with software.
Since it appears unrealistic to abandon the
use of computers for safety relevant control

purposes-on the contrary, for the reasons
mentioned above, there is no doubt that their
utilisation in such applications is going to in-
crease considerably the problem of software
dependability will exacerbate severely.

In the situation as outlined above, this
paper is timely to address a real problem. It
does not present a solution to all open ques-
tions in safety related computing, but a be-
ginning is made which is practically feasible
and applicable to a wide class of common
control problems. Hence, we hope that the
concept presented here leads to the break-
through that, ultimately, discrete or relay
logic can be replaced by programmable elec-
tronic systems executing safety licensed high
integrity software to take care of safety criti-
cal functions in industrial processes. Meeting
the need of society for more dependable com-
puting systems under the prevailing economi-
cal restrictions, we expect that the concept
will give rise to workable industrial
mentations.

In a constructive way, and using presently
available methods and hardware technology
only, for the first time a computer architec-
ture was defined, which enables the safety li-
censing of complete programmable electronic
systems including the software. Special em-
phasis was dedicated to the software side,
since it is felt that software dependability
still needs to catch up with the one already
achieved for hardware. Our solution deviates
from the classical approach (as still followed
by the mainstream in computer science and
engineering) by using hardware as much as
possible, but not necessarily in the most
(hardware-) cost effective way, and by en-
forcing the (re-) use of pre-engineered off-
the-shelf software modules. The former devia-
tion is in line with the technological develop-
ment : there is cheap hardware in abundance
and it ought to be used to achieve our objec-

imple-
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tive, viz, to implement inherently safe
systems. The other deviation represents leav-
ing the tradition of the von Neumann archi-
tecture allowing maximum flexibility-also to
commit errors and to be unsafe. Later, when
experiences will have been gained and a
sound engineering methodology for safety re-
lated systems will have been developed,
restrictions may be relaxed and more flexible
approaches may be devised addressing wider
application areas.
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