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Splitting Rules using Intervals for Object Classification in Image Databases

June-Suh Cho' - Joonsoo Choi™

ABSTRACT

The way to assign a splitting criterion for correct object classification is the main issue in all decisions trees. This paper describes
new splitting rules for classification in order to find an optimal split point. Unlike the current splitting rules that are provided by
searching all threshold values, this paper proposes the splitting rules that are hased on the probabilities of pre assigned intervals. Our
methodology provides that user can control the accuracy of tree by adjusting the number of intervals. In addition, we applied the proposed
splitting rules to a set of image data that was retrieved by parameterized feature extraction to recognize image objects.

Key Words : Classification, Probability, interval, Object, Image

1. Introduction

This paper discusses how to recognize image objects
using a classification method in image databases. Our
method provides simple splitting rules based on the proh—
abilities of intervals. New splitting rules based on the
probabilities allow one to search for interesting regions of
data.

In prior work[3, 11, 13, 17, 18], most methods of clas-
sification repeatedly search for the best split of a subset
by searching all possible split points for all variables. In
addition, these methods suffer from the raw data to
maintain the accuracy. This paper addresses the problem
of finding splitting rules for a classifier using a set of
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pre-assigned intervals for covariates rather than ex-
haustively searching over all possible splitting values.

In this paper, we propose the method based on new
splitting rules from image databases using the proba-
bilities of pre-assigned intervals, which are randomly or
manually assigned. The intervals provide the meaningful
distribution of objects and the stopping criteria. Our
methodology also provides the user with control of the
accuracy of the tree by adjusting the number of intervals.

Prominent examples of classification have been based
on different splitting criteria such as Gini index[3], en-
tropy[17], test[11],
rate[13]. These methods do an exhaustive search to find

Chi-squared and muisclassification
the best split points. The exhaustive search approach has
problems with bias in varable selection, tree size and
depth, and can be intolerant of small changes in the
learning sample. In order to address these problems, we
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propose simple splitting rules based on minimizing the
sum of variance and maximizing the difference of proba-
bilities of intervals. In this paper, we focus on the split
selection to classify image objects using given rules in-
stead of a tree construction.

The rest of this paper is organized as follows: In
Section 2, we review the background of our work. In
Section 3, we describe the new splitting rules. In Section
4, we show the results of our experiments. Finally, we
conclude this paper in Section 5.

2. Theoretical Background

Most work on image recognition and classification has
concentrated on or been based on the chject recognition
and detection methods. Decision tree algorithms are very
important, well-established machine learmning technique
that has been used for a wide range of applications, es—
pecially for classification problems[3, 8, 9, 15, 17). Many
classifiers can be viewed as computing a set of discrim-
inant functions for a data set, one for each class, and as-
signing to each class the function whose discriminant
value is maximum(2]. Examples here include statistical
learning methods like CARTI3] and C4.5[18].

There are many splitting rules for decision trees, and
advantages and disadvantages for each rule. Therefore,
there is no best splitting rule that can be applied to all
problem types or purposes. These methodologies are
summarized as follows:

CARTI3] is used to build a decision tree whose ques-
tions minimize the impurity of the subsets at that point
in the tree. As long as new splits can be found, the de-
cision tree keeps on growing. These splits improve the
ahility of the tree to separate objects of a training set in-
to classes. Each of the candidate subtrees is used to
classify the objects in the test set. The tree with the
lowest overall error rate is declared the winner.

C45018] produces trees with varying number of
branches per node. It uses a criterion called information
gain (entropy) to compare potential splits. Another area in
which C45 differs substantively from CART is in its ap-
proach to pruning. C4.5 prunes the tree it has grown
without reference to any data beyond the training set.

CHAIDI[11], which descended from an earlier automatic
interaction detection(AID), is the oldest of the algorithms
for detecting statistical relationships between variables.
The algorithm searches for a way to use the input varia-
bles to split the training data into two or more child
nodes. A Chi-squared test is used to measure if the pro-

portion of classes is significantly different. In CHAID, the
tree keeps growing until no more splits are available.
This leads to differences in classification that are statisti-
cally significant. Another difference is that CHAID is re-
stricted to categorical variables. Continuous variables
must be broken into ranges or replaced with classes.

QUEST(14] is a method for computing binary classi-
fication trees based on univariate or linear combination
splits for categorical predictors or ordered predictors. A
unique feature is that its attribute selection method has
negligible bias. If all the attributes are uninformative with
respect to a class attribute, then each has approximately
the same chance of being selected to split a node.

These methodologies repeatedly search for the best
possible split of a subset by searching all candidate split
points for all variables. However, our approach uses
intervals. The user manually or randomly assigns inter—
vals for each attribute, and is less than the number of all
possible split points. Exhaustive search methods have
trouble with the tree size and depth. In this paper, our
approach is to find the best split points with a simple,
small ‘classifier, and provide good accuracy of classi-
fication to recognize the objects.

In the following section, we specifically examine the
classification with only the two-class situation. The cri-
teria used by traditional trees are summarized as follows:

We assume that there are two classes, 0 and 1. We
give definitions as follows:

n = the total number of objects in the parent node

n; = the number of objects in the left bucket

np = the number of objects in the right bucket
n! = the number objects of class 1 in the parent node
»n! = the number objects of class O in the parent node

n. = the number of objects of class 1 in the left bucket

._.
1]

the number of ohjects of class 1 in the right bucket

ng
n) = the number of objects of class 0 in the left bucket
n% = the number of objects of class 0 in the right bucket

1 1
_np _ _"g 1 _ "L L _ MR
P = , Pr= , Pr= Pr=

n n nr np
AL oy Mp
P = , Ph= ,
n np

Split point = A split point is a point P, which divides a
set S into two exclusive subsets, S, and S,, such that
the attribute value of all points in §, is < the attribute
value of the split point P and the attribute value of all
points in S, is > attribute value of the split point P.
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3. The Proposed Methods

General approaches to split selection have been pro-
posed in the statistical literaturef1l, 3, 18, 14, 19]. Most
approaches examine all possible binary splits of the data
along each predictor varable to select the split. If X is
an ordered variable, this approach searches over all possi-
ble values ¢ for splits as follows:

X<c

In order to split the predictor variables, our approach
assigns the range of each attribute variable into some
number of uniformly sized intervals.

Our splitting rules compute probabilities based on the
intervals, take the intervals, which have the highest prob-
ahility, then add up the intervals to select a split point by
given split rules. Intervals need to give meaningful dis-
tribution of objects. To give meaningful distribution, in-
tervals are merged to find a split point. The size of the
intervals also provides the stopping criteria.

However, we have a limitation of the number of
intervals. If we assign 1, 2, or small intervals, our split—
ting rules may not provide the best split point and the
performance of our method may be worse than other
methods. To avoid this limitation, we need to find a rea-
sonable interval size on datasets.

The advantage of our approach is that the number of
intervals can be controlled by the user. In addition, we
stop splitting the subset if the sample size in some buck—
et is less than a user-specified value or there is no sig-
nificantly different variable under the splitting rules.

In the context of probabilistic object recognition, we
compute the probabilities of the intervals. Given a split
with left and right buckets, the probabilities of class 0
and class 1 on the left and the right satisfy 2} +pi=1,

%+ pl, respectively.

In this study, we consider two kinds of splitting rules.
One is to select a best split point by minimizing the sum
of variances of intervals, another is that maximizing the
difference of probabilities of intervals. We assume that
the variance of an interval is the sum of the individual
variances. In the following equation, 4, and g4, repre-
sent the fraction of class 1 that goes to the left and right
buckets. We consider a splitting rule as follows:

-(g.p! +q.p))

This criterion to split a node is obtained by consider—
ing the proportion of responses in left and right buckets.
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Since 5! is fixed at the parent node, it can be repre-
sented as follows:
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where n n,

Based on the above equation, we can represent that
minimizing the sum of variances is equivalent to max-
imizing the sum of weighted probabilities in the left and
the right bucket as shown in equation (1).

min 1= (g, p} + q,p3)]=maxla, pl +a2pk]
Since g, +gp=1, wWe can rewrite the sum of weighted

probabilities as follows:
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q4,P) +9aPr =(1-a){

1

R 1 1 1 1 1
a=—",n=n, +n,,n =n,+n,,n, <n, <n—-n
where, nt’ L £ LR L L £

This expression is maximized by increasing p} or pl
when g4, or g, is neither class O nor class 1. Another
criterion for splitting is maximizing the difference of
probabilities between the left and the right bucket. This
approach is based on the search for interesting regions of
the data regardless of non-interesting regions. This crite-
rion can be expressed as shown in equation (2).

mf"‘iplt - P 2)

As we discussed above, the algorithm to select a best
split point under each splitting rule and the method to
combine these two rules are summarized in this section.
In addition, the splitting rules are calculated based on
class 1.The hybnd splitting rule is to compromise the ad-
vantages and disadvantage in minimizing the variances
and maximizing the difference of probabilities in the left
and the right bucket. Our approach for object recognition
is based on the hybrid splitting rule.

Splitting rule 1
1. Split a predictor variable into 7, intervals,

1<i<L.

For each interval J, calculate p; = Plclassl|xe1,)

and ¢, = P(classl | classl in pareant node,x € I i)
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2. From the interval, which has the highest proba-
bility, add up the intervals to find a split point c
by maximizing the sum of weighted probabilities of
each interval as shown in equation (3).

d, ZmCanLpi +q1ep}e‘ (3)

Splitting rule 2

1. For each interval [, calculate Pfl = P(Cla”l [xe Ii)

2. From the interval which has the highest probability,
add up the intervals to select a split point ¢ by
maximizing as shown in equation (4).

dy :m;‘lxipi —PH 4)

Hybrid splitting rule
1. For each interval 7, calculate p =Plclassl|xel,) and
q = P(classl | classl in pareant node,x € I ,.)

2. Calculate two statistics ¢, 4, and give a rank to

them according to the grouping of the interval.

3. The average ranks for each group are given by two
splitting rules. When the average ranks are the
same, the priority is given to the first splitting rule
because there is still a chance to split the other
predictor variables later.

4. Take a split point ¢ with the highest rank.

After we find split rules, we should consider how to
assign stopping criteria. For the stopping criteria, we
consider two stopping rules. One is to allow splitting to
continue until all leaf nodes are pure or contain no more
- than a specified minimum number of objects. Another is
to allow splitting to continue until all leaf nodes are pure
or contain no more objects than a specified minimum
fraction of the sizes of one or more classes.

According to the split rules, a tree grows until it
meets the stopping criteria. At that moment, we can get
the optimal tree. In order to assign stopping criteria, we
directly assign the size of objects at leaf nodes. In terms
of the stopping rule, we assign the default size of objects
at each leaf node to stop splitting at that node.

Split Points Selection with an Example
In this section, we describe how to select split points

based on our split rules.

1. We assume that we have eight feature parameter
vectors, which have 27 objects for class 0 and 14

objects for class 1 among 41 objects. In addition, a
default class for calculation is 1.

2. We assign the intervals into feature parameter vec—
tors such as roundness, form factor, aspect ratio,
surface regularity, angle of second moment, entropy,
contrast, and mean.

3. For example, we have a feature parameter vector for
roundness, and we assigned five intervals in a vec-
tor as shown in Figure 3.1. We also assigned five
intervals in other feature parameter vectors. We cal-
culate variances and differences of a feature vector
for roundness based on given equations as follow:

dy =35 -Wag=0294 = (33,4 114 11, )= 03685
di =[5~ Wyl = 00417y = (3¢ x 3, + 14 1Y )= 03422
diy =Y Wosl=02525 iy = (s g+ W x 1, )= 03858
dio=[%4= %= 03210 dyy = (5, %K+ Yy, )= 0418

We also calculate variances and differences of other
feature parameter vectors. At each feature vector, we
perform the same calculation as above.

4. After calculating the probabilities, we find a best
split point among feature parameters. Among fea-
ture parameters, we select a feature parameter
based on split rules as follow:

Roundness * ¢,=0.3211, dp,=0.4148

Surface regularity : ¢, =0.3143, d;=0.3541
d,=0.2944, dy,=0.3708

Angle of second moment : 4, =0.1051, dp,.=0.3460
Contrast : ¢, =0.2944, dy.=0.3687

Entropy © d;,=0.0494, dy,=0.3430

Mean : dIM:01857’ dIIM:03541

Aspect ratio :

From the above examples, ¢, and 4, of roundness

produce the maximum values based on split rules. (Figure
3.2) shows an example of a feature parameter vector to
find a split point by split rules.

3456 04721 O 5986 07251 05516 08751

0=277a1 ‘ ‘

1=141 | | | | | ] |
0= 0=3/3 0=ars 0=68 0=817
1=3/5 1=0/3 1=08 1=2/8 1=9/17

dy=| Pl - Pl | = (8024 - 9/17)= 0.3211
dy= (@' Pl + gl Ply) = (5/14%5/24) + (9/14%9/17) = 0.4148

(Figure 3.1) Example of the splitting rules: intervals and
probabilities.
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4. Experimental Results

To enable setup of a classification rule, we assume
that training data is provided. What we would like to
know is the proportion of errors made by this rule when
it is up and running and classifying new objects without
the benefit of knowing the true classifications. In this
section, we describe the data sets and the results of ob-
ject recognition by the proposed method.

Qur image database consists of 356 randomly selected
objects of images from current online shopping electronic
catalogs on the Internet. The image objects are catego-
rized by semantics, such as cups, and plates. In addition,
our image database contains images which are scaled, ro-
tated, and different posed objects.

As we described in [5], we have used image parame-
ters such as surface regularity, roundness, form factor,
aspect ratio, angle of orientation, contrast, and mean since
these are image feature parameters. Especially, shape pa-
rameters distinctly represent image objects in our image
database. In order to achieve minimum rates of error for
object recognition, we performed experiments using fea—
ture parameters of images. We performed recognition
with image objects in the training data sets and we eval-
uated the test data set.

To perform the experiments, we have raw datasets
from the randomly selected objects. We performed classi-
fication based on a training set of image databases as in
Figures 4.1 represent tree structure for plate and cup for
dinnerware. It shows image parameters and decision vari-
ables to get to leaf nodes. We assigned the number of
intervals as 30% of the total number of objects and the
minimum size of intervals as 5% of the total number of
objects.

We used 60% of the total number of objects for the
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training data set, and 40% of the total number of objects
for the test data sets using Bootstrap [7] method because
of the size of data. Figures 4.1 shows classification trees
based on the training set. This figure shows image fea-
which are used to
Experiments have been implemented using Matlab for

ture parameters, split  subsets.
evaluation of the split rules.

The probability of leaf nodes represents the distribution
of objects, which belong to the class. For example, if a
leaf node shows 1.0, it means that a leaf node has 100%
number of objects corresponding to a class. On the other
hand, 0.0 means that a leaf node does not have any ob-
jects of a class. It represents the ratio of misclassified to

classified objects in each leaf node.

4.1 Comparison with Other Methods

In this section, we describe the experimental method-
ologies used in each of the next following sections.
Typical measures to evaluate quality of classification
trees include tree size and tree depth on training and test
sets. These experiments were performed to evaluate our
method compared to the exhaustive search methods such
as CARTI3] and S-plus treel6].

42 Tree Size and Depth

Optimality of a decision tree may be measured in
terms of size and depth[15]. It should be clear that it is
desirable to build optimal trees in terms of one or more
of these criteria.

<Table 4.1> shows a comparison between our method
and other exhaustive search methods.[15, 13} mentioned
that smaller and shallower decision trees imply better com-
prehensibility and computational efficiency. Comprehensibil-
ity typically decreases with increase in the tree size and
complexity. Shallow trees are also more cost-effective, as

Bxnd < 0.85163

Swf < 060203

02s an 10

Surf < 0.63109

Exnd = 091717

0o Surf < 0.63375

0.8333 00

(Figure 4.1) Example of the tree structure for Plate and Cup. The probabilities of
classification are given below each node.
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(Table 4.1> The classification tree size, and tree depth using
our method compare to the exhaustive search
methods on ten test sets. In experiments, our
method used the number of intervals as 30% of
the total number of objects and those numbers
are averaged.

Measurements
Methods
Avg. Tree Size Avg. Tree Depth
Our method 102 47
CART 168 5.1
S-plus tree 9.8 5.2

(Table 4.2> Performance evaluation with Precision, Recall, and
F-score with other methods on Training and Test
sets. Our method used the number of intervals as
30% of the total number of objects.

Precision Recall

F-score
Methods

Training | Test
Our method| 89% | 938% | 91.6% | 925% 8381 931

CART 814% | 87.2% | 85% | 89.1% 839 881
S-plus tree | 795% | 89% | 859% | 87.2% 826 855

Training | Test |Training| Test

the depth of a tree i1s a measure of its classification cost.
Tree size represents the number of leaf nodes, because
the tree size starts at the root node and increases by one
with each added split. In this experiment, we compare
tree size and depth with those resulting from the ex-
haustive search methods.

<Table 4.1> gives the number of levels for each clas—
sifier on raw datasets. Ten test datasets were gathered
from our image database. We classified, computed, and
averaged those numbers. Comparing the tree size of our
method and other methods, our method is smaller than
CART, but similar to S-plus tree. In addition, our method
is shallower than S-plus tree and CART. Therefore, the
results show that our method is better than CART and
S-plus tree. Overall quality of our classification method 1s
better than other exhaustive search methods. We conclude
that our method provides reasonable tree size and depth.

4.3 Precision and Recall

The receiver operating characteristic (ROC) curve en-
ables us to analyze and visualize classification perform-
ance separately from assumptions about class distributions
and error costs[17, 1, 2]. (Figures 4.2) and (Figures 4.3)
show the ROC curves for our approach and exhaustive
search approach, on training and test datasets respec—
tively. Each of the points on the curves is for some spe-
cific value of the threshold, which is a probability of leaf
node, for thresholds 95%, 85%, 75%, 65%, and 55%.

In order to evaluate the effectiveness, five sets were
run through the classifier, and precision and recall scores
averaged in <Table 4.2>. We compare precision, recall,
and F-score compared to CART and S-plus tree. In prior
work, the method in[12] experimented a method compared
to CART and OC1l. This method produced a higher
precision score for the “Australian” dataset related to
credit card. The precision of this method was 3% better
than CART and 4% better than OCl. OC1 method in [16]
shows comparison between CART and C4.5 on several

—a4— Exhaustive Search

Pracison

—a—PIC

(Figure 4.2) Precision vs Recall(60/40 split). The receiver
operating characteristic curves on the Training

datasets.

100

gj .
§ ™
] —a— Exhaustive Search
2 70 4
a —m— PIC

m -

50 T T T

50 €0 70 0 o0 100
Recall

(Figure 4.3) Precision vs Recall(60/40 split). The receiver
operating characteristic curves on the Test
datasets.

different real-world datasets such as “Breast Cancer
Diagnosis” and “Diabetes Diagnosis”. The precision of
OCl was 1% better than others on “Breast Cancer
Diagnosis” dataset, and 1% better than CART and 3%
better than C45 on “Diabetes Diagnosis” dataset. Buntine
[4] experimented with a classification method on several
datasets such as “Medical data”, “Pole Balancing data”,
and “Voting data”. This method was compared to CART
and C4.5. The precision of a method was from 2% to 3%
better than others. CARTI3] also experimented the com-
parison of the precision with nearest neighbor classi-
fication, CART produced 6% higher precision than nearest
neighbor classification on “Waveform” data set.
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In prior art, the improvement of the precision is from
1% to 6% or more differences of precision compared to
other methods. As we can see from the table, the differ-
ence of precision score between our method and others is
more than 4% in training sets and 6% in test sets, which
1s considered significant improvement in precision.

To evaluate the capability of classification, we calcu-
lated F-score to combine precision and recall. F-score
shows that our method is much closer to 1 than other
methods. Comparing F-score of our method and others,
our method has a good capability of classifying objects. It
is worth mentioning that the training and test data
shown here both have an operating point on the ROC
curve for which average Precision and Recall are 80% or
above. The method demonstrates higher precision and re—
call scores than the exhaustive search method.

Therefore, we conclude that experimental results show
that our approach provided better precision and recall
scores with fewer splits, and our method demonstrates
good capability of classification compared to other methods.

5. Concluding Remarks

In this paper, we have introduced a method to perform
classification that are new splitting rules based on the
probabilities of pre-assigned intervals, generated from bi-
nary tree splits to find split points.

The proposed method described how to find the max-
imal decision criteria based on new splitting rules. In ad-
dition, our method allows users to control the accuracy of
a tree by adjusting the number of intervals and objects.
However, we have a limitation of the small number of
intervals. To avoid this problem, we experimented and
selected the number of intervals as 30% of the total
number of objects.

According to experimental results, our method demon-
strates higher precision and recall scores against the ex—
haustive search methods. The results show that our
method properly classified objects in image databases.

Our methodologies allowed one to search images based
on image objects. Experimental results show that our ap-
proach provides reasonable accuracy with fewer splits,
provides smaller and shallower tree. In addition, the ex-
periments show that this probabilistic approach is suitable
for solving object recognition problems.
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