154 St=F2HeIEs =FX HB-DB H23(2001.4)

Sy AF T FelLE A o
LZEHY T+ dFed

d g 4
2 o

AZEHFF diFo] AW WFHY RIE VARE I3} A AVt AT 22z HHol@ FEV A2d F UFA
719 S ol &% A7gel AAHR gtk 53] WFFE o]8F FTFAF LS| 5o o HAEAA g nn ¢4 4543
AAEL gk 234 ol A4 2 M= mEHo ot & HE AHuoH Y xolzg B HA R AHE ojH /AE R &
&4 Zdo] A7l vk £ AFAME ol VI AFYELY B2 FHE A M2 WFoz HH F4Y RdFES ol
4dE 3 AEE AMEE] A AL FelaE AY7EE AT 09949 Az FYd Z2HE FARE FH FFH Al
71 &Y A% 299 At E¥HY COCOMOEY 12|x 7|&e| AR 2d3 Hwd)A «5E3} 2do fddo] FohSS ¢
F AT weA & AN AEA AT 48 AR mdd HAARZE JIPPL S JRALY HUQdeHE {83t
A A £ g Aot

gy off

Parsimonious Neural Network and Heuristic Search Method for
Software Effort Estimation Model

Eung-Sup Jun'

ABSTRACT

A number of attempts to develop methods for measuring software effort have been focused on the area of software engineering and many
models have also been suggested to estimate the effort of software projects., Almost all current models use algorithmic or statistical mechanisms,
but the existing algorithmic effort estimation models have failed to produce accurate estimates. Furthermore, they are unable to reflect the rapidly
changing technical environment of software development such as module reuse, 4GL, CASE tool, etc. In addition, these models do not consider
the paradigm shift of software engineering and information systems (i.e., Object Oriented system, Client-Server architecture, Internet/Intranet
based system etc.). Thus, a new approach to software effort estimation is needed. After reviewing and analyzing the problems of the current
estimation models, we have developed a model and a system architecture that will improve estimation performance. In this paper, we have
adopted a neural network model to overcome some drawbacks and to increase estimation performance. We will also address the efficient system
architecture and estimation procedure by a similar case-based approach and finally suggest the heuristic search method to find the best estimate
of target project through empirical experiments. According to our experiment with the optimally parsimonious neural network model the mean
error rate was significantly reduced to 14.3%.

IINE : Y MAUDW(Parsimonious neural network), I AT E(Similar case-based approach), At27|8HE28 (Reuristic
search method), H2AR M| (Software effort estimation)

1. INTRODUCTION an intangible creation process. The development of models
for estimating software effort and the assessment of the

Estimation of software effort is one of the most important factors affecting software development have been the focus
issues for the effective management of software projects and of many research studies. Although a number of software
to make software products more competitive. However, it effort estimation models and methods focusing on algorithmic
is very difficult to accurately estimate software effort, as mechanism have been suggested, there are a lot of com-
the development of software is a labor-intensive task and plaints and critiques by users. These complaints are mainly

concerned with the existing models or methods not having
t A3 AU} e LY By) - . .
=824 20009 98 8Y, AALgkE 12001 29 139 . accuracy, fitness, flexibility, or portability. Studies have

shown that the cost and effort estimates derived from
different models seem to have significant variations (Saied-
ian, Band, and Bamey, 1992).

The neural network (NN) model is a more effective
conjecture method than the existing mathematical or
statistical function model. Methods of improving the esti-
mation, for the most part, have been based on neural net-
work approaches. However, the performance of software
effort estimation using a naive neural network alone is not
as effective because of all the various data noises included
in input factors,

We will focus our research issues on combining the neural
network model with a case-based approach and devise an
efficient search algorithm in order to improve estimation
performance. The purpose of the study is to find the optimal
estimation result and to suggest an architecture of a NN
model. The goals will be achieved by analyzing the sensitivity
between the degree of the similarity of cases, and the number
of input factors. To solve this problem, we propose to use the
qualitative input factors as criteria of data group. With the
data sets that have the same values for certain qualitative
input factors, we can eliminate the factors from the model
building parsimonious neural network models. We will select
the search algorithm to find the best estimation result and
suggest the estimation method and procedure for this
architecture. We will also evaluate and validate the compar-
ative performance of our model through an empirical test.
According to the paired t-test, we could prove that the
optimally parsimonious neural network model can signifi-
cantly reduce the error more effectively than the naive
neural network model which uses the all data with the all
input factors.

The remaining sections are organized as follows : the
performance of the major algorithmic software estimation
models and the nave neural network models are reviewed
in section 2. The definition of input factors for the naive
neural network is described and the performance with a
parsimonious neural network model is studied in section
3. The effective and parsimonious type of neural network
model with the similar case-based approach is suggested.
The system architecture and procedures of software
estimation is described in section 4. The performance
evaluation of the naive neural network and the parsimoni-
ous neural network model with the optimal similarity level
through the sensitivity analysis is analyzed in section 5.

2. SOFTWARE EFFORT ESTIMATION MODELS

2.1 MAJOR ALGORITHMIC SOFTWARE ESTIMATION
MODELS

There have been several software effort estimation models,
such as Boehm's COCOMO model, Putnam's SLIM model,
RCA’s PRICES model, Jensen's SEER model, Grumman's
SOFTCOST model, Albrecht’s Function Points etc. Among
the current models, COCOMO (Boehm, 1981) and Function
Points (Albrecht et. al., 1983) are the predominant software
effort estimation models. However, the existing software
estimation models have suffered from a number of
weaknesses. In using functional algorithmic models such as
COCOMO, SLIM and Function Points, managers and estima-
tors of software development projects complain that it is very
difficult to apply them directly to a different business
environment. They also comment that these models are not
flexible enough to be utilized within the current rapidly
changing software development environment (i.e., develop-
ment tools, methodology, new language and any other
information technology).

2.2 LIMITATIONS OF EXISTING SOFTWARE ESTIMATION
MODELS

There have been many discussions on the accuracy of the
existing software effort estimation models. Numerous
estimation methods based on algorithmic models are not
valid due to a lack of accuracy, according to the research
results of Kermerer (1987). He showed that the inaccuracy
of algorithmic models are as follow :

® SLIM had 772% error of estimates
¢ COCOMO had 610% error of estimates
¢ Function Points had 103% error of estimates

His study indicates that more research is needed to
develop a model for software effort estimation for the current
software development environment. Venkatachalam (1993)
argued that the models could not reflect the recent
development technology in the areas of programming lan-
guages, hardwares, and methodologies of software engi-
neering, communication and network technology etc..

Through review of several research studies on software
effort estimation, we pinpointed the limitations of the
existing software effort estimation models. Recently, in order
to improve the accuracy of the estimation model, there have
been numerous attempts to utilize the artificial intelligence

156 St=FENZ(=Z] =X He-DH X2z(20014)

techniques in software engineering because those techniques
are clearly required in the field of software effort estimation.
Prietual, et al. (1991) emphasized that a qualitative improve-
ment in estimation could come from expert insight. Vicinanza
et al. (1991) suggested that more accurate estimation could
be generated by an experienced software development
manager. Ramsey (1989) suggested a knowledge-based ap—
proach for improving accuracy ; and Wriegly (1987) em-
phasized that Human judgment remained as the dominant
method. Bergeron (1992) surveyed and summarized that the
most important estimation methods were the experience,
expert, and analogy approaches. Genuchten (1991) got similar
results to those stated above.

2.3 NEURAL NETWORK MODELS

Neural Network is very powerful method which is used
to find the mapping relationship from a paired data set. It
has the following advantages ; robust to non repeatable data
or missing data, or strong to data representation and nonlinear
effect by hidden layer. Most predicting and decision-making
methodological advances have been based on statistical tech—
niques. Artificial neural network is a new challenger for these
methodologies (Hill et al., 1994). It has been widely applied
to solving many forecasting and decision modeling problems
because it can be modeled easily to any type of parametric
or non-parametric process and it can transform the input
data automatically and optimally into the output (Hiew and
Green, 1992). Venkatachalam et al., (1993) recommended the
concept of neural network model architecture for software
effort estimation. In his research, a back-propagation neural
network was constructed with 22 input nodes and two output
nodes. The input nodes represented the distinguishing features
of software projects, and the output nodes represented the
effort required in terms of person-month and the development
time required to complete the project. The variables considered
for the research were taken from the COCOMO database. In
his research, he was unable to compare his neural network
model with COCOMO because it was an on-going research.

Srinivasan et al. (1995) compared his neural network model
with Kermerer's results obtained from 15 projects. His model
used 15 input attributes of product, computer, personnel, and
project classified by Boehm. and used the regression trees for
learning decisions. He showed that his output was more
efficient than that of Boehm's COCOMO.

Jun (1996) designed the neural network model composed
of one output (i.e, man-month) and nine inputs that impacted

on the software development effort. He suggested that his
neural network model had a more efficient performance of
estimation compared to other models such as COCOMO and
the multi-regression model which were designed by using
the same input factors and output. From these models,
however, we found that the biggest problem was the data
noises, which lead to the large error rate of estimates. And
as a result our focus turmed to reducing the data noises.

3. NEURAL NETWORK MODEL APPROACH FOR
SOFTWARE EFFORT ESTIMATION

3.1 DEFINITION OF INPUT FACTORS FOR NN MODEL

Since there are numerous variables that can influence the
amount of effort needed to complete a system development
project, we selected the input and output factors after
considering the possibilities for the empirical data set
collections and the factors which had general features such
as Boehm's suggestions in this study.

Our research classified the major factors affecting software

- effort estimation into four categories : Project features,

Product features, Staff features and Technology features.
Among these features, Project and Product are extraneous
variables which are uncontrollable. Staff and Technology are
intrinsic, or decision variables, which are controllable. After
surveying the 30 participants who developed and maintained
software projects in Korea, we selected and defined the
necessary factors by analyzing the importance between the
effort and the candidates of input factors for our research
model. We also surveyed the priority order of four features.
Project features are considered of the first priority order,
Product features are the second priority order, and staff
features and Technology features are the third and fourth
priority order respectively. Consequently, we prioritized the
criteria which classified the similar case groups in the
following order : project, product, staff and technology. They
are defined according to the suggested criteria of Boehm's
(1984, 1988) and Bergeron's (1992) researches. In this study,
we defined the major input factors more detailed for our NN
model by considering the ease and the possibility of data
collection as shown in <Table 1>. Here, Used Algorithm is
specially noteworthy because of its four detail items ; D/B
access, 1/0 process, Math/Statistics process, and Al based
process. They apparently have nominal type of values such
as “Yes” or “No”, but they are determined to be either “yes”
or “no” depending on the density of them that plays an

important part in systems. So the quantitative percentage
of the relative importance in systems determine values of
the Used Algorithm's four items. The values are to be binary
depending on the density. Thus, there are eight qualitative
input factors used for case grouping criteria as followings ;
Duration_Constraint (I1), Development_Type (I4), Process-
ing_Type (I5), Development_tool (119), Methodology (120),
Language (121), Module_Reuse (122), Network_Type (123). In
the neural network model, the qualitative factors are
represented as 0 or 1. So qualitative factors do not make a
big difference from the quantitative factors in computations.

(Table 1> Definition of Input Factors

Cart-:l%gso Input Factors Values Type
Duration Constraints(I1) |[Normal | Urgent] |Qualitative
Duration of Training and | Average Required |Quantitative

Project | Education(I2) Man-Months

Features| Size(I3) No. of Module Quantitative
Development Type{l4) | [New Development||Qualitative

Maintenance)
Processing Type(I5) [Batch | On-Line] |Qualitative
Used Algorithms :
* D/B Access(I6) Percentage Qualitative
« I/O Process(I7) Percentage Qualitative

Product * Math./Statistic Percentage Qualitative

Features Process(I8) o
« Al based Process(I9) [Percentage Qualitative
Task Type :

« Strategic(I10) Percentage Quantitative,
» Administrative(I11) Percentage Quantitative
* Operational(112) Percentage Quantitative
Skill Level :

* Beginner(I13) Number of Person |Quantitative
« Junior(I14) Number of Person |Quantitative|
« Senior(115) Number of Person |Quantitative)

Staff r—— ——

Features Similar Application

Development Experience :
« Beginner(116) Avg. of Months |Quantitative
« Junior(I17) Avg. of Months |Quantitative
* Senior(I18) Avg. of Months _ |Quantitative|
Development Tool(119) [Use | Not Use] |Qualitative
Methodology (120) [Use | Not Use]l [Qualitative

Techno™T} anguage(121) [BGL [4GL] __|Qualitative

Feates| Module Reuse(122) [Use | Not Use] _|Qualitative
Network Type(i23) [Centralized | Qualitative

Distributed]

3.2 FEEDFORWARD NEURAL NETWORK MODEL

We designed the neural network model and experimented
with it to compare with other models, such as the COCOMO
model. The feedforward neural network model designed for
this study had 23 input factors, one output factor of effort
(man-month), and some hidden nodes. The selection of the
number of hidden nodes is often based on a heuristic approach
(from n/2 to 2n+1, where n means the number of input nodes).
The model was trained by using backpropagation algorithm

ok AP F2IAE HAM0 oS AZERN B+ GIEZ2Y 157

implemented in the system UNIK-NEURO.

Input Factors

Coe e)
input 1

Input 2

nput 3

Input 4 Efiort(Man-Month)

Input 8
Qutput Layer

Input &

Input 7

BB EEBESE.

input 23
| R

Hidden Layer

Input Laysr

(Fig. 1) Full NN Model

We collected data from 45 software projects for training and
testing. 35 projects were used for training data, and 10 projects
were used for test data. We tested a total of 30 estimates of
the randomly selected target projects three times through
experiments. Through our experiments, we were able to
produce the best design for a neural network model which had
one hidden layer, 18 hidden layer nodes and 750 times of
learning epochs. The 10 projects were randomly selected for
each experiment.

In order to compare it with other estimation model, COCO-
MO was also designed with the same input variables as the
neural network model used. To measure the comparative
performance between the two models, we needed to compute
the MRE (Magnitude of Relative Error) of each model. This
metric was suggested by both Thebaut (1983) and Conte et.
al,, (1986) and used by Kermerer (1987) for effort model
validation. MRE is calculated as the absolute percentage
error of the estimate with respect to the actual amount of
effort required to complete a project ;

| MM oy — MM,
MM,

Where MMes: is the estimate of man-months and MMac is
the actual effort consumed by the project.

Later, this formula was used to evaluate the accuracy of
estimation. A comparison of the MRE between two models
is shown in <Table 2>.

MRE = 100

(Table 2> Comparison of MRE Between 2 models

Models Revised Naive Neural
MRE COCOMO Network
Average 93% 21%
Standard Deviation 111% 23%
Maximum 540% 86%
Minimum 2.8% 1.5%

158 st=H2X2=g =X M8-DF H23(2001.4)

A paired t-test between the NN model and COCOMO was
performed to validate comparative performance statistically.

® Revised COCOMO vs NN model
+ Null Hypothesis (Hp) : Upc = Unn
 Alternative Hypothesis (Hi) : Urc > Unx
(Un~ : Mean of MRE by NN model, Urc : Mean of
MRE by Revised COCOMO)
* Paired t-test comparison

Statistics Items

t-value : 3.16
Degree of Freedom : 58

Significance Level | Decision

05% Reject Ho

This means that .the neural network model is superior
to the revised COCOMO.

4. NEURAL NETWORK MODEL AND CASE BASED
APPROACH

4.1 PARSIMONIOUS TYPE OF NN MODEL

Qualitative improvements in estimation accuracy can not
be achieved by a naive neural network model alone. The
most accurate experts utilize a form of similar problem
solving called Case-Based Reasoning Approach, in which
effort estimation is driven by recall of previously encountered
software projects. If we reduce the data noises by matching
a target project to past cases, then the NN model is a more
efficient approach for increasing the accuracy of estimation.
A more important distinction in this study is that the cases
with the same qualitative values can be grouped as a case
set. Within a case set, we can eliminate the input factors
that have the same values making a parsimonious neural
network model. »

In a parsimonious NN model, input factors used for
classifying similar case groups are excluded because those

90000000

(Fig. 2) Parsimonious NN Model

factors have the same values within the case groups. There-
fore, the number of input nodes could be reduced from 23 to
15. We can estimate the result with less input factors than
those of the naive NN model, so the architecture of the NN
model will be changed into a more parsimonious form as
in (Fig. 2).

With this type of NN model, the learning time for the final
test can be reduced and the accuracy of estimation can be
increased because of preprocessing and filtering the noises
of input data.

4.2 PARSIMONIOUS NN MODEL COMBINED WITH CBA

To increase the accuracy of estimation of a NN model,
the data noises should be eliminated. Several research pro-
jects have studied effective estimation performance using an
analogy approach of past cases, and most of these studies
reported the desired output. A CBR approach was suggested
for a software effort estimation model by Mukhopadhyay et
al. (1992) by obtaining protocols from a human expert. From
a library of cases developed from expert-supplied protocols,
an instance called the source is retrieved that is most
“similar” to the target problem to be solved. The solution
of the most similar problem retrieved from the case library
is adapted to account for differences between the source
problem and the target problem using rules inferred from
analysis of the human expert’s protocols. CBR system can
be used to perform more tasks than just classification, neural
networks and pattern recognition can not. Main et al. (1995)
suggested the use of neural networks for case-retrieval in
a system for a fashion shoe design. Basically, we designed
the neural network model architecture, and combined it
with a case based approach, which we call ‘hybrid type of
estimation model architecture’. We have to consider the
various factors affecting the effort for software development
and maintenance. The research architecture required that all
factors of the four categories be classified into two types :
quantitative factors and qualitative factars, as (Fig.3).

The quantitative factors are mainly used for the neural
network model and the qualitative factors are used for increas-
ing the accuracy of estimation in the case-based approach>The
qualitative attributes for our estimation model are processed
by a case based approach because it is difficult to accurately
reflect them in the quantitative problem. It is very convenient
to use for the criteria of case group classification by them
because the qualitative variables have discrete values. The
reflection of quantitative factors for estimation are mainly

(Fig. 3) Type of Input Factors

performed by a NN model architecture. But, there are some
problems to classify case groups as they have continuous
values. Our major research issues in the case-based approach
are not just implementing case-based reasoning in order to
find the case which is the most appropriate among past cases,
but to also find a group of several cases in each level of
similarity to the target case and building an efficient neural
network parsimoniously and compactly. Also, in this research,
the sensitivity analysis between the case based approach and
the neural network model for finding the optimal estimation
result is accomplished. In order to accomplish this, the first
step is to compute the level of similarity between the target
project and past projects. The second step consist of grouping
similar projects for input factors of a NN model. And finally,
we evaluate the test results of each group by changing the
similarity level until we find the optimal results.

4.3 SYSTEM ARCHITECTURE AND PROCEDURE

The system architecture for software effort estimation is
suggested in (Fig. 4). In this architecture, we construct the
hybrid systems which is combined with NN architecture and
a case based approach.

In order to estimate the effort required for the target soft-
ware project, the characteristics of a target project should be
defined, and the input factors necessary for searching similar
cases should be selected. Then the cases according to the level
of similarity can be grouped. Next, the effort is estimated by
the NN model with the changing of the level of similarity
intensity. Lastly, in order to find the optimal solution, we
analyze the sensitivity of the estimated output of the NN
model according to the level of similarirty intensity.

The procedures of software effort estimation by the NN

=iy ML FoILE ZM0l B 2ZEQ0 S+ s 159

model and CBA are as follows :

Step 1) Define the input factors of a target S/W project
estimation
We use the frame representation for defining the target

project.

{{ New_Process_Mgt
IS-A : Business_Transaction
Project_Feature :
(Development_Type New_development)
(Duration_Constraints Urgent)
(Duration_of_Train_Educ (M-M 1))
(No_of_Modules 240)
Product_Feature :
(Processing_type On_line)
(Used_Algorithm (D/B 1) (/O 1) (M&S 1) (A1 0))
(Task_Type (Strategic 0.5) (Administrative 0.3)
(Operational 0.2))
Staff _Feature :
(Skill level (S 1) (J 2) (B 4)
(Avg_Mon._of_Development (S 0) (J 24) (B 16))
Technology_Feature :
(Development_Tool Use)
(Methodology Use)
(Language 4GL)
(Network_type Distributed)
(Module_Reuse Use)
Actual_Efforts :
(Man-Month) }}

Step 2) Measure similarity for CBA

We defined the similarity function for the sensitivity
analysis, that is how level the case is similar to relatively.
The function is defined as follows :

o SIM(Intensity) = Number of the same qualitative input
factors

Sysiem Architecture and Procedure of NN Modei and CBA

(Fig. 4) System Architecture and Procedure of NN Mode! and CBA

Here, we define the measure method of similarity of
qualitative factors as suggested by Cain (1993) and O'Leary
(1993). As in the case of non-numeric values, the nearest
neighbor algorithm assumes that a case will be represented

160 St=HENZ(Sts] =2X H8-DHE M2=(2001.4)

as a set of factors. The similarity metric of this algorithm
simply counts the number of factors that a target and a

stored case have in common :
Intensity = (207, sim (Case;, Target;))

where Target; is a qualitative input factor of the target
project and Case; is that of the stored project cases and sim
(x,y) is defined as :

simx,y)=1if x=y
Qif x=y

Step 3) Set and group the relevant cases according to the
feature hierarchy of the target project. For example,
in case of setting the similar case group for a target
project, Project_domain is Business_Transaction
then ;

IF (Development_Type is New_development)
AND (Duration_Const is Urgent)
= Similarity I ity of Proiect F i< 2
IF (Processing_Type is On-line)
= Similarity Intensity of Product Features is 1
IF (Development_ Tool is Use)
AND (Methodology is Use)
AND (Language is 3GL)
AND (Module_Reuse is Yes)
AND (Network_Type is Distributed)
= Similarity Intensitv of Technology Features is 5
Total SIM intensity is 8 =¥ SIM(8)

In the above case, the total similarity intensity becomes
8. The similarity distance is defined as the value of total
SIM (8). For example, If the value of SIM is 8, then the
relevant cases are retrieved and grouped into a similar case
group for an estimation NNmodel.

Step 4) Determine input factors of NN model according to
the level of similarity
In the same case group, similar factors, especially qualitative
input factors are eliminated from the candidate input factors
for NN model because they have the same values within a
same case group.

Step 5) Build and train NN models with similar cases
The number of cases in a same case group are used for
the instances of NN model to estimate effort

Step 6) If the level of similarity are found no more, then
go to Step 8 Else go to Step 7)

Step 7) Increase the intensity level of similarity and go to
Step 3)

Step 8) Determine the best search algorithm and find the

optimal estimation result

4.4 SIMILARITY PRIORITY AND INTENSITY

In order to define the similar case group, we determined
the priority order of qualitative input factors and defined the
intensity of similarity based on analyzing the result of survey
in the previous section.

Similarity Order and intensity

(Fig. 5) Similarity Order

(Fig. 5) shows the hierarchies of major qualitative input
factors in software project on business transaction. Here, we
define the priority order of similarity factors according to
the importance of qualitative input factors in the survey as
mentioned before.

For example, if S/W Project for Marketing Management
is selected as a target project, we could group the similar
cases as comparing the similar input factors according to
the priority and classify the similar case groups by each
intensity of similarity.

Similarity intensity is computed by SIM function sequen-
tially by the priority order as follows :

1) Project_Domain is Business Transaction : All cases which
have SIM (0) that are used

2) Development_Type is New_Development : Case group
has SIM (1)

3) Duration_Constraint is Urgent : Case group has SIM (2)

4) Processing_Type is On-Line : Case group has SIM (3)

5) Development_Tool is used : Case group has SIM (4)

6) Methodology is used : Case group has SIM (5)

7) Language is 4GL : Case group has SIM (6)

8) Module_Reuse is used : Case group has SIM (7)

9) Network_Type is Distributed : Case group has SIM (8)

In this paper, the algorithms of grouping the similar cases
according to similarity intensity is shown in (Fig. 6).

(Fig. 6) Aigorithms of Grouping Similar Cases

The number of similar cases within the same case group
are collected according to the similarity level above mentioned
in <Table 3>. Generally, between the number of similar cases
and similarity level, there are two relationships : The high
similarity intensity with few cases, and the low similarity
with more cases. This means that the lower similarity, the
more cases it will have ; and on the contrary the higher
similarity, the less cases it will have.

{Table 3> The Number of Similar Cases

— STM{SIM|SIM[SIM|SIM] SIM| SIM|SIM
Similarity | Ml Cases 1) g |@|w|e|©|0|®
No. of Cases 45 B[(26]20(13]10[10] 5|5

45 SENSITIVITY ANALYSIS

In the case of estimating the effort of a target project, we
need to define the similar factors and search the similar
cases. Then we compute the similarity intensity by using
a similarity function, and estimate the effort by using the
NN model on each case group with the same similarity.

100]
80 _
80 ‘ -1
2 ;g \ ——AGoIMREL |
E 50
= 40
| 30
20
10
Q
S 2 Z 8§ 8 T &8 8 E =
Q e = = =2 = Z = = 2=
5] = w @ o 7 @0 @ @ @
Q =

Models and Similarity

(Fig. 7) Sensitivity Analysis of MRE and Similarity Level

oY NP FelLE Mol oSt LZE0 B+ CIEZE 161

It is possible to analyze the sensitivity for getting the
optimal solution which has the least MRE. (Fig. 7) is a graph
representing the relationship between the MRE and the level
of similarity.

In our test, we found a relationship between the level of
similarity intensity and the estimates. As shown in the graph
representation of (Fig. 8), the MRE of the estimated value
of the target project fluctuates with the level of similarity.
This sensitivity analysis continues the estimation process
until it finds the final desired result by changing the degree
of similarity level and simultaneously adjusting input factors
of NN architecture.

5. PERFORMANCE EVALUATION

5.1 COMPARISON OF EXPERIMENT RESULTS

In order to compare our NN/CBA model with a naive
neural network model and COCOMO, we tested the output
with the same data set used in 3.3. We conducted experiments
three times by getting 10 estimates of the randomly selected
projects each time. The total 30 results of software project
estimation are used for comparison of estimation perfor-
mance.

Each of the three experiments randomly tested 10 projects
using 35 project cases and we got the estimates of 30 total
projects as showed in <Table 4>.

(Table 4> Effort Estimates by Each Model

Estimated Effort(MM)
Naive NN Oomblned ~with Simflar Cases
Project Actual |COC- NN : (Similarity Intensity)
Values| OMO SIM(O) SIM}SIM)SIM|SIM|SIM{SIM|SIM|} SIM
W] WIE[E]D]O6)
Pro. 1| 30 | 62 23 | 22| 24 26| 23| 25 27| 3B %
Pro. 2] 15 57 19 | 16] 18] 14] 13} 12| 14] 17) 12
Pro.3| 20 2% 36 | 28 26| 25| 17| 15| 16| 21| 23
Pro. 4| 50 | 63 43 | 43] 42(4] 51| 42| 45 33 33
Pro. 5| 62 | 103 48 | 45| 38| 51| 55| 66| 72[42| 65
Pro.6| 36 75 34 | 41| 45] 33| 33| 48] 42
Pro. 7{ 23 18 32 | 28 21| 23| 25 22| 22
Pro. 8| 10 33 12 8 11 9 ul 9 11
Pro.9| 8 18 14 9 10| 11} 8 8 9
Pro.10| 22 15 41 | 28] 23] 18] 19] 25 23
Proll| 98 | 263 167 | 103] 79| 67| 83
Proi2| 14 2 16 | 20f 21 13] 15
Prol3| 30 2 42 | 43| 26] 32{ 28
Prol4| 36 35 39 | 39 B I
Prol5| 40 84 42 | 4 36| 4
Prol6| 48 62 35 | 50| 44| 46
Pro.17| 102 73 68 | &4 8| I
Prol8| 33 54 32 | 34 32 R
Prol9| 67 R 68 | 59| 70| 67
Pro20| 8 | 102 120 | 78 88| &

162 B YEXEISD] =R MG-DH M2z=(2001.4)

To measure the comparative performance of our model,
MRE values from the outputs of each model need to be
computed through the experiment as shown in <Table 5>. In
the following table, the dark cells show the best MRE which
has the minimum error for each project. We computed the
statistics of these as follows :

Statistics of the minimum MRE by each project
Average 645 | Standard Deviation : 534 | Max:24 | Min:0

The average of the best MRE value is 6.45%. Therefore,
we need a efficient search algorithm to find this value for
each project. In 5.2, we devise theorems of search algorithm
for finding it. In <Table 5>, the values of MRE in each
similarity are showed.

(Table 5) Values of MRE (Unit : %)

. Naive [SIM[SIM[SIM[SIM[SIM|SIM[SIM [SIM
Project |COCOMO} o 'y @ @ | w |G @] @] ®
Pro. 1 107 23 | 27| 20] 13]] 17] 13
Pro. 2 67 2 1. 2082 13[20 20
Pro. 3 %5 8 | 4] 30| »] 15] > 15
Pro. 4 % 14 | 14] 16] 12}::2] 16 A
Pro. 5 66 2 | 27] 20| 18] 1] 65
Pro. 6 108 | 14| 83
Pro. 7 2 39 | 22| 87} .p] 87] 4
Pro. 8 230 20 | 20030 Bl 2B
Pro. 9 125 75 | 13
Pro.10 32 8% | 27 14
Pro.11 168 70 I8k 32| 10
Pro.12 64 14 | 43
Pro.13 10 40 | 43
Pro.14 28 | 83 | 83| 83| 28
Pro.15 10 | &5 10| 10] 20
Pro.16 2 27 [43 83] 42|
Pro.17 2 3 | 18] 16| 48
Pro.18 64 | 343l 8" 8
Pro.19 46 | 15 | 12] 45] i@

Pro.20 28 25
Pro.21 69

Pro.22 52

Pro23 | 342

Pro.24 45

Pro25 | 540

Pro.26 17

Pro.27 3 i

Pro.28 53 15]

Pro2l| 13 22 15 | 16| 14 Pro.29 100

Pro22| 420 | 640 520 | 578] 563 Pro.30 167

Pro23] 12 53 15 | 13 18§

Po24| 49 | 27 53 53 The total trends of MRE are represented as shown in
Pro.25 5 32 6 71 6 et

ol 2 T 2 = T3 19 <Table 6>. We analyzed and evaluated the sensitivity between
Pro27| 9 | 12 1 | 10 the values of MRE and the intensity of case similarity.
Pro28| 150 | 230 136 | 128

Po29| 8 | 16| 7/ 8 (Table 6) Statistics of MRE Values

Pro.30 9 24 11 10

NN Combined with Similar Cases
Statis- | COCO|Naive| (Similarity Intensity)

tis | -MO | NN [SIM[SIM|SIM]SIM[SIM] SIM | SIM [SIM
wlele vlelelole

BV of| ago | 2196 | 179 | 1996 | 1296 | 1096 | 159 | 1196 | 20% | 179

%%"f 111% | 23% | 13% | 13% | 10% |5.9% | 109 [5.39% | 13% | 11%
WEM‘“ 540% | 86% | 439 | 50% | 38% | 23% | 33% | 209 | 349 | 349
WE 28% |15% | 0% | 3% | 0% | 09| 09 [4.3% | 59% l4.8%

Through the empirical test, we were able to find the best
result, which has the least MRE value. The best estimate
is as follows :

Similarity Intensity is SIM (4) which has a MRE average
of 10%, Standard deviation is 5.9%, Max MRE is 23% and
Min MRE is 0%. Comparing the results reveals that the
combined model with NN and CBA reduced the errors of
the naive NN model. But, we can not use the case group
which has SIM (4) as the learning data for NN model. A
target project of SIM (4) may have no similar cases because
it missed the estimate of 17 projects (from pro. 14 to pro.
30) as in <Table 4>. So, we need to devise rules to get the
estimate in such a case.

5.2 SEARCH RULES FOR SENSITIVITY ANALYSIS

We defined three search rules for sensitivity analysis to
get the least value of MRE instead of using the average of
MRE by each level of similarity.

5.2.1 Theorem of Search Rule 1

® The similarity level which has the point of the first
convex is selected as the best solution for an estimation
model.

® When several points which have the same values exist
on the convex points,

we selected the most right-hand side value.

5.2.2 Theorem of Search Rule 2

e The similarity level, which has the point of the second
convex, is selected as the best solution for estimation
model.

¢ When the several points which have the same values
are existing on the convex points, we selected the most
right-hand side value.

o If there is no second convex point, we selected the first
convex point as in the case of search rule 1.

5.2.3 Theorem of Search Rule 3

e The similarity level, which has the point of the third
convex, is selected as the best solution for the estimation
model.

® When several points, which have the same values, exist
on the convex points, we selected the most right-hand
side value.

e If there is no third convex point, we selected the second
convex point as in the case of search rule 2.

e If there is no second convex point, we selected the first
convex point as in the case of search rule 1.

We compared the differences among the best MRE, the
MRE of naive NN, and the MREs by Search Rule 1, Search
Rule 2 and Search Rule 3 about 30 projects.

In <Table 7>, we can determine search rule 2 as the best
rule for searching the least minimum error for getting the
optimal output of sensitivity analysis using similar case-
based approach.

(Table 7> The Differences between Search Rules and Best

MRE

Best |, [Diff. Diff.= Diff = iff =

Project| MRE Nﬁr‘q’e IBM—Sﬁm}‘lw— Search) gy | Search i
el Rule2 Rule 3

(BM) (NN SR1L « [SR3] |
Pro.1] 10| 23 | 13] 2 3] 10] 0] 13| 3
Pro. 2] 67| 27 'm3] 671 0] 67| 0] 67[0
Po.3| 5| 8 |] 15[10 5[0 51 0
Pro.4] 2| 14| 12 14] 12 2] o] 10 8
Pro.5| 48 | 23 | 182| 23 |182| 65| 17| 48| 0
Pro.6) 56 [56 | 0] 56| 0| 83| 27| 83| 27
Pro.7] 0] 201 3] of o] 43] 43| 43| 43
Pro.8] 10 20| 101 10] o] 10| 0] 10[0
Pro.9] O | ®m] 13] 18 ol o ol 0
Prol0] 45| & [815] 45 0] 45] 0] 45[0
Prodl| 51| 70 649 51 [o] 10]49] 10] 49
Prol2]| 71| 14 | 69 14| 69] 71| 0] 71| 0
Prol3] 67| 40 [33] 67| 0] 67| 0] 67] 0
Prola| 2883 | 55 28| o] 28] o] 28[o
Prol5| 5| 5] 0 5[o 5/ 0 5[0
Prol6| 42 | 27 [228] 42 o] 42| o] 42[o
Prod7| 49| B3 [281 491 0] 49| o] 49| o
Pot8| 3] 3] 6] 3] o 3] 0 3] 0
Pro19| o[15| 18] 1515 ol 0 0 o
Pro20| 25 5] 250 0] 25] of 251 0
Pro2l| 77| 15 | 73| 15[73} 77 0] 77[0
Pro22| 24| 24| 0] 24| 0] 34| 10] 3[10
Pro23| 83| 25 {1671 83 . 0] 83| 0] 83[0
Pro24| 82 | 82 o] 82 o] 82| of 82| o

oty LB D RLIAE MO oS AZEQN S+ oiE2 163

Pns] 0] 2] of 2] o] o] of o] o
[Pro26] 42 [42 o] 42| o] 42| o] 42| ©
[Po27] | 2| 1| 1 ol n| ol ufl o
Po2| 93| 93 0l 93] o] 93] o] 93] o
Po2®| 0| 13| 13 0 0 0] 0 0l 0
Po| n|l 2| nul n o] m ol ul o
By 6135 819 %6 29
Difference
L
AVG of o 109
Difference an e
No. of 0's
;) 8 .l 2% p|
Difference

According to the above theorems for search rules of the
sensitivity analysis, the number of 0's was counted and the
percentage was computed by each similarity level in <Table 8>.

The case group that has the SIM (3) of similarity intensity
is showed as the best input learning cases for the neural
network model.

(Table 8> The Number of 0's in Each Similarity Level

Naive | SIM | SIM | SIM | SIM | SIM | SIM | SIM | SIM
NN | D] @13 WO [6]O0]®]
No.of 0’s
differences 8 10 6| 11 5 2 311 1
Total Cases 30 01262]13[]10]10] 5 5
Percentage 271% | 33% | 23%6 | 55% 138.494 20% | 30% | 20% | 20%

53 HEURISTIC SEARCH RULES FOR OPTIMAL ESTI-
MATES OF TARGET PROJECT

1t is impossible to compute the MRE of each future target
project, so we need to devise another search method that
is similar to the previous search algorithms. We extended
the three previous theorems to six heuristic search rules for
search algorithms to find the least variance between the
actual values and the estimated values in each level of
similarity intensity.

These theorems assume that the best result exists in
convex points or concave points in each level of similarity
intensity (i.e., from naive neural network, which means SIM
(0) to the highest level of similarity intensity, which means
SIM (8)) of each target project.

® Search Rule 1 (Ist Convex Point) : select the first
convex point as the optimal estimate and the best case
group for machine learning

® Search Rule 2 (2nd Convex Point) : select the second
convex point as the optimal estimate and the best case
group for machine learning

® Search Rule 3 (3rd Convex Point) : select the third
convex point as the optimal estimate and the best case
group for machine learning

164 SnZEMEES =FX H8-DH H2%=(2001.4)

® Search Rule 4 (I1st Concave Point) : select the first
concave point as the optimal estimate and the best case
group for machine learning

® Search Rule 5 (2nd Concave Point) : select the second
concave point as the optimal estimate and the best case
group for machine learning

e Search Rule 6 (3rd Concave Point) : select the third
concave point as the optimal estimate and the best case

group for machine learning

Using the previous cases, the search rule was selected as
the best search algorithm to get an optimal estimate under
the real situations. <Table 9> shows the results got by using
these six search rules of search algorithm for finding the best
estimate.

(Table 9> Optimal Estimates in Each Search Rule (Unit : MM)

Project |Act. Value Es}:fns;te Rllﬂe Rlzlle R;le Rlile Rl;le R;]e
Pro. 1 30 2] B %] B] 6]
Pro. 2 15 14 16| 12] 12| 19] 18] 17
Pro. 3 20 15| 15} 15| 3 3
Pro. 4 50 51 @ 2] B 81

Po.5 | 62 [B 2| 2] 8] 2B
Pro. 6 % 34 3| B 2] 5] 8] 8
Pro. 7 23 2 2] 2| 2| »| | »
Pro. 8 10 (9),11) gi.& 8l 12| J11 11
Pro. 9 8 8 9 gl 4] 1| 9
Pro. 10 2 23 Bhaigl a4 5] »
Pro. 11 % 103 67 67! 8| &
Pro. 12 14 13 16 2] 15] 15
Pro. 13 30 (2,2 | 2 168 8l 2
Pro. 14 3% 35 33 | Bl B
Pro. 15 40 42 g 4 48
Pro. 16 48 (50),(46) B B 6]
Pro. 17 102 97 wd
Pro. 18 3 (32),(34)]
Pro. 19 67 67 70
Pro. 2 80 (78),(82) 88
Pro. 21 13 14 16
Pro. 2| 42 520 578
Pro. 23 12 13

Pro. 24 49 53 :

Pro. 25 5 6

Pro. 2 24 23

Pro. 27 9 10

Pro. 28 150 1%

Pro. 20 8 8

Pro. 30 9 10 T
No. of the least minimum values 11| 12

As showing in <Table 9>, dark shaded cells represent the
least errors of man-months between the actual MM and the
estimated MM. Therefore, we found Search Rule 3 as the
best rule for search algorithm in the empirical test. We
computed the statistics of MRE for the 30 total target

projects, which were randomly selected as shown in the
following table.

Average of MRE 14.3%
Standard Deviation of MRE 11%
Max MRE 347%
Min MRE 0%

It means that this result is more efficient than not
using search algorithm, that is to say, the total average
of MRE (15.2%) that is computed by each level of sim-
ilarity intensity as showed in <Table 10>. It shows the
comparative statistics of MRE by using the existing es-
timation model (COCOMO), a naive neural network model,
a combined model of neural network and case based ap-
proach, and a method of the suggested heuristic search
algorithm approach.

(Table 10) Comparative Comparison of MRE in Each Model
and Method

COCo Naive | Average of | Search Rule Minimum
“MO Neural | Each Sim- | 3 of Search|Values of Each
Network |ilarity Level| Algorithm |Similarity Level
%{‘E"f w%| 2% | 152% 143% 65%
;E f mo| 2% | 102% 11% 53%
MM;"E 540%| 8% 50% 7% 24%
m‘E 28%| 15% 0% 0% 0%

It means that the estimation model of neural networks
with case based approaches has a more efficient estimation
performance by using the heuristic rule for search algo-
rithm as in <Table 10>. Therefore, we could summarize
that we have to use the neural network model combined
with case based approaches supported by rules for heuristic
search algorithm in order to achieve a more accurate esti-

mate.

6. CONCLUSION

To overcome the drawbacks of the existing software effort
estimation models for the rapidly changing software develop-
ment or maintenance environment, we suggested a new
estimation model which we called the hybrid effort estimation
model as it is composed of the neural network model and
the case-based approach supported by the heuristic search
algorithm. It is possible to test the sensitivity of the estimated

values of the neural network model by changing the number
of the input factors and the similarity intensity. With this
mechanism, the neural network model can be designed and
built more parsimoniously and efficiently. An efficient heu-
ristic search rule needs to be devised for finding the best
estimate of our estimation model automatically and for
classifying the types of relationship in the estimated value
according to the level of similarity intensity. The preliminary
results obtained from our experiment show that the neural
network model performed effectively with the assistance of
a case based approach using optimal similar cases from the
past projects. We also described the estimation procedures
and suggested the efficient search algorithms for finding the
best output of effort for a target project. In future studies,
we are going to verify that the model is a promising, and
versatile tool for accurately estimating software effort with

more collected cases.

REFERENCES

{1] Abdel-Hamid, T, K., “Adapting, Correcting and Perfecting Soft-
ware Estimates : A Maintenance Metaphor,” IEEESoftware,
Vol5, Nod, pp.15-22, Jul. 1988.

[2] Barletta, B., “An Introduction to Case-Based Reason-
ing,” Al Expert, pp.43-49, Mar. 1992.

(3] Bergeron, F., and St-Arnaud, J. Y., “Estimation of Infor-
mation Systems Development Efforts,” Information and
Management Vol.22, pp.239-254, 1992.

(4] Boehm, B. W, “Software Engineering Economics,” Tuto-
rial : Software Management (3° ed.), IEEE Computer
Society, pp.135-152, 1984.

[5] Boehm, B. W., “Understanding and Controlling Software
Costs,” IEEE Trans. on Soft. Eng., Vol.14, No.10, pp.
14621477, Oct. 1988.

(6] Hill, T, O'Connor, M. L. and Remus, M. “Artificial
Neural Network Models for Forecasting and Decision
Making,” International Journal of Forecasting, pp.5-15,
Sep. 1954

(7] Jun, E. S, “Using Artificial Neural Network for Software
Development Efforts Estimation,” KISS Vol.3, No.1, pp.
211-224, Jan. 199.

(8] Kermerer, C. F., “An Empirical Validation of Software
Cost Estimation Models,” Commun. Of the ACM, Vol.30,
No.5, pp.416-429, May. 1987.

{9] Kermerer, C. F., “An Empirical Validation of Software
Cost Estimation Models,” Commun. Of the ACM, Vol.30,
No.5, pp.416-429, May. 1987.

2
144
>
i
2
=]
Jot

EIAE M0l st AZE0 S+ HI=EZE 165

[10] Lee, Heeseok, “A Structured Methodology for Software
Development Effort Prediction Using the Analytic Hierarchy
Process,” Journal of Systems Software, Vol.21, pp.179-186, 1993.

[11] Lee, Jae Kyu and Kim, Ho Dong, “Man-hours Requirement
Estimation for Assemblies using Neural Networks,” 34
Japan/Korea Joint Conference on Expert Systems, Tokyo,
Mar. pp.22-24, 1994.

[12) Main, J., Dillon, T. S. and Khosla, R., “Use of Neural
Network for Case-Retrieval in a System for Fashion Shoe
Design,” Industrial and Engineering Applications of Al and
Expert Systems, Proceedings of the 8" International
Conference, pp.151-158, 1995.

[13] Mukhopadhyay, T., Vicinanza, S. S., and Prietula, M.],
“Examming the Feasibility of a Case-Based Reasoning
Model for Software Effort Estimation,” MISQ (4 : 1),
pp.155-171, Jun. 1992.

[14] Saiedian, H., Zand, M., and Barney, D.,, “The Strengths
and Limitations of Algorithmic Approaches to Estimating
and Managing Software Costs,” International Business
Schools Computing Quarterly, Spring, pp.21-22, 1992.

[15] Srinivasan, K. and Fisher, D., “Machine Learning Ap-
proaches to Estimation Software Development Effort,”
IEEE Trans. On Soft. Eng., Vol.21, No.2, pp.126-137, Feb.
1995.

[16] Venkatachalam, A. R., “Software Cost Estimation Using
Artificial Neural Networks,” in Proceedings of 1993
International Joint Conference on Neural Networks, pp
987-990, Jul. 1993.

[17] Vicinanza, S. S., Mukhopadhyay, T., and Prietula, M.],
“Software-Effort Estimation : An Explolatory Study of
Expert Performance,” Information Systems Research,
Vol.2, No4, pp.243-262, Dec. 1991.

[18] Wrigley, C. D., and Dexter, A. S., “A Model for Measuring
Information System Size,” MISQ, Vol.15, No.2, pp.245-257,
Jun.1991.

3 &Y
e-mail : esjun@hanmail net
o 2000d FFHTIEd HRF A
| 1985 ~ 1989 FF | EA TR A2
FHH A7
h 1989 ~1991d @FHP N AQHAEE
19919~ @A A uiet AxEs) AL
AR 2E, A7
AAAY

T

A7, 2zeqo|Fe AT %

	K:
	H:
	N:
	[L:

