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Performance Improvement with Determination of Coefficients
by Energy Function Analysis in Hopfield Neural Networks

Chi-Yeon Park'

ABSTRACT

With its potential for parallel computation and general applicability, Hopfield network has been investigated and improved by many
researchers in order to extend its usefulness to various combinatorial problems. Despite its success in many applications, determination of the
energy coefficients has been based primarily on trial and error methods since no practical systematic way of finding good values has been
available previously. In this paper, a methodical procedure for determining the coefficients is proposed, which utilizes direct energy level to guide
the network along a path to a valid and high quality solution. Simulations on TSP comparing with other methods have shown the efficacy of

the proposed approach.

FINE : BBWE MAU(Hopfield neural networks), HE&i(optimization), OfL4X} B<(energy function), M(coef cients)

1. Introduction

Since Hopfield neural network [8] was proposed as a very
fast way of solving combinatorial problems with its potential
for high speed, parallel computation and its apparent
applicability to a wide variety of problems, many researchers
[9, 17] have worked on this model to ascertain its effec-
tiveness. In 1985, Hopfield has shown that neural network
method can be applied to the TSP(Traveling Salesman
Problem) which is one of the most popular NP hard problems
[6]. In this network method, when the corresponding energy
function is formulated for a specific optimization problem,
it usually is the sum of several terms, in which each term
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represents either a particular constraint requirement or the
objective function. The coefficient of each term influences
the path on the energy surface along which the network
evolves. Therefore these coefficients should be carefully
chosen so that the network can reach the areas in which
good solutions reside. Previously the selection of these
coefficients has been based primarily on trial-and-error
methods, which means that for each problem the coefficients
must be re-determined by many experiments before suc-
cessful application.

For the TSP with 10 cities, Hopfield and Tank determined
good values for the coefficients in the energy function using
an expensive trial-and-error approach. They reported im-
pressive results [8], although others [14, 19] have gotten poor
results even for the same problem with the same parameters.



138 H2Xei=zl=2R He-BT X2%(2001.4)

On the other hand, many other researchers have proposed
remedies [1, 3, 4, 13], mostly by altering the energy function,
to correct the poor performance reported, since the global
energy function may have a variety of different forms. But
these modified forms of the energy function did not remove
the difficulty of finding proper values for the parameters.
One theoretical investigation of these parameters has been
reported by a Cambridge research group. Aiyer et al [2]. have
introduced a theoretical method of utilizing the eigenvalues
of the weight matrix, to determine values for the coefficients
which yield valid solutions. However, this method requires
an extensive amount of preprocessing of analysis for
problems.

In fact, experimental work discussed in Hedge et al [7].
indicates that good values for the coefficients may exist in
very narrow, difficult-to-find regions of parameter space.
As the pure Hopfield method seems to be difficuit to imple-
ment successfully, some (15, 18] have employed other heu-
ristic m.ethods as a postprocessing stage to improve the
solutions, resulting in a degradation of the benefits of a
purely neural network approach.

In this paper, the effect of the weight parameters on the
behavior of the network is described. By analysis of the role
of these parameters, we introduce a systematic and practical
way of evolving the network by adaptively adjusting the
parameters utilizing the energy information of the network
directly. Also, to avoid an additional computational burden in
the evaluation of the energy level at each stage, an efficient
incremental update of the energy has been described.

2. Effect and Analysis of Weights in Energy Functions

When an optimization problem is mapped to the network
model, the total computational energy of the state of the
network is defined as either

E= _"ZLEZT,','V,'V,"‘ ZI,‘V,‘ (1)

where V; is the output response value of neuron i, T is the
synaptic weight between neuron i and j, and [; is the input
bias to the neuron i, or in terms of multiplication of a weight
matrix T and a response vector V.

EV)= — —21 VITV— VI @

With this general form of the energy function, the network
iterations will converge if the internal activity value of

neuron i, 4, is updated at each time step of iteration
according to the equation

Gu; __ JE
ar v, )

where Vi for neuron i has the range 0<V;<1 by applying
a monotone-increasing function to the activation of input u;.
The simulation can be achieved in digital computer simply
by the first order Euler method such as

ult+od= u,(t)+[Z}:T,;V,-(t)+I,-]At @

where the time step, At, is to be set small enough to keep
the numerical stability.

Many combinatorial optimization problems can be mapped
onto a Hopfield neural network by constructing a suitable
energy function and transforming the minimization of the
energy function into an associated differential equation or
system of differential equations. For example df TSP, the
energy function was formulated as '

E= "’%‘ Zz]g‘ ViVt "QE ng gx ViV
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Indices x and y refer to cities, and i and j refer to positions
of the cities in the tour, and the sums run from 1 to N where
N is the number of cities and dxy represents the ‘distance’
between city x and city y. The first three terms correspond
to the constraints of the problem. The last term represents
the cost of the solution when the network reaches a valid
solution, i.e. one satisfying all constraints for the problem.

Notice that each term of Eq. (5) has its coefficient multi-
plied by the current energy of that term, for constraint terms
and the objective term. These parameters exist for balancing
the energy of each term so that the network can be guided
to the region where it can attain high quality solutions. But
this causes a serious difficulty when the energy function is
to be formulated. Since the energy surface created by this
form of energy function may have many local minima,
improperly chosen parameters may cause the network to
become stuck in a local minimum in which some constraints
are violated or the solution obtained is of low quality.

In order to examine the behavior of each neuron, let us
consider the energy function described in Eq. (5) as an
example for simple 3 city TSP. After this energy function
is mapped onto the neural network model, the weights to



a particular neuron, say uz, from the other neurons, and its
bias are shown in (Fig. 1).

(Fig. 1) Weight connections to a neuron

The change of the activation of the neuron, Aug, can be
easily computed according to the updating rule given in Eq.
(3). Thus the amount of change of internal activity for the
neuron, Au, is decided by the all neurons connected with
the given unit and the weights between them. By comparison
with its total energy function, these weights are directly
assigned from the coefficients in the energy function. The

+ choice of these coefficients directly affects not only the sign
of Aum, either positive or negative, but also the magnitude
of the value. Each unit transmits its output value across the
corresponding weight on the connection between the neu-
rons for which the terms need to be satisfied. Usually these
terms conflict with each other in the sense that the change
of u; in favor of reducing one term may increase the energy
of the other terms so that the network is moving away from
the region where those constraints can be satisfied. There-
fore, putting too much emphasis on a particular term may
result in the network moving to a region far removed from
optimality for the other terms. This behavior is the cause
of difficulty in determining good parameter values, since we
do not know at the beginning of iterations of the network
how much emphasis to place on each term in order to
maintain balance during evolution.

Some alternative forms of the energy function have been
devised by various researchers to obtain an improved Hop-
field network method for solving the Traveling Salesman
Problem, without a clear explanation of the cause of the poor
performance of the original energy function given in the
article of Hopfield et al. [8]. Before a different energy
function is to be sought, some facets of the original energy
formulation should be pointed out. With the energy function
proposed in the original article, there exists an ambiguity
which is not clearly explained regarding the use of such
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parameters, regardless of the coefficient values chosen.
Suppose we have reached the state of a valid solution after
some iterations, perhaps even an optimal solution in which
Va1, Vi, and Vi3 are on(1) and all others are off(0). This must
be a state which is one of the local minima which stabilizes
the network, so that none of the neurons needs to change
its internal activation. But, the neurons in the figure' still
have negative change of activation.  For instance, the
activation of a neuron, Au, is

Aun=—D'd21—D-d32 6

since all Vj are 0, except Vis, Ve, and Vs which have output
values of 1. v

Due to this inevitable excessive inhibitory effect caused
by the distance term, the network always tends to have less
than N neurons ON at its final state. This situation can be
verified by simple experimentation. In our experiments,
usually the network has only 7, 8 or 9 neurons ON for 10
city TSP when it reaches a stable state. The simple way
of overcoming this problem may be to increase the coef-
ficient, C, in the energy function. But, increasing this value
not only affects the excitatory value, i.e. the external positive
bias +CN, but also the inhibitory value, -C, between all
neurons at the same time. One way to increase only the
excitatory value is to increase the value N by a factor of
@ in the energy function so that external input ¢ - CN can
compensate for the excessive inhibition caused by the cost
term. Indeed, for a 10 city TSP, the value N is set to 15
instead of 10 in the original article [8]. Another way [16]
to accomplish this effect is to simply remove the self
inhibition weight, T, in which case the energy function also
needs to be modified.

Regardless of the quality of solutions obtained with the
network, a fundamental difficulty in this approach may arise.
By modifving the value of N, the implication of the total
energy function may not be the same as originally was
intended, and therefore no conceptual justification can be
made for the implication of the terms in the energy formu-
lation. In addition, it results in adding one more parameter,
N, to be tuned along with the energy function coefficients.
The actual values chosen for A, B, C, D, N in the original
paper [8] were 500, 500, 200, 500, 15, from which we see that
the task is not trivial. A typical invalid final state of the
network corresponds to either visiting the same city twice,
or visiting two cities at the same time, which can avoid the
energy cost based on the distance term.
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3. Proposed Weight Adaptation and Energy Evaluation

3.1 Adaptively Adjusted Weights

In our method, to find good coefficients for the energy
function, the energy of each component is traced through
each epoch of iteration. At the same time, it is utilized to
control the effect of each term on the evolution of the
network toward the point we hope to reach. Since each
constraint term has its own minimal energy level which
results in satisfaction of one of the requirements for a
solution of the problem, the current energy level of each term
can be treated as the distance from its goal state. By
comparison of the energy levels of the different terms, the
network can deterrnine how well these terms are balanced
for moving toward their common goal by either competing
or cooperating with others.

The basic idea of this method is that the weights are
adaptively adjusted to prevent the network from following
a path that is biased in favor of some terms at the expense
of others. After each epoch, the new connection weights are
computed depending on the current energy of each term.
This results in the following formula for the new coefficient
of each term.

e B (V) _ AZCELV))
-To} ac,

= =E{V) ("N

In early stages of the evolution of the network, these
energy levels will be large, which causes the network to be
somewhat unstable due to the large values obtained by direct
use of Eq. (7). For this reason, the new coefficients are
normalized so that the relative proportions of these values
can be kept without excessive jumping around on the energy
surface. The normalization is done simply as

c’
c’

7

Ci(normalized) = 8

This is a steepest ascent procedure. It represents maxi-
mizing the energy function with respect to its coefficients.
While this may seem counter-intuitive at first, it has the
desired effect of increasing the coefficients of those terms
that are contributing the most to the value of the energy
function. It is those terms that most need to be reduced
during network iteration, so more weight(emphasis) is
placed on moving in a direction which reduces the larger
terms most rapidly.

Note that the coefficient of the objective term has a
difficulty in being adapted in this way. The minimal energy
of the objective term can not be predicted in advance,
because it is the value that the network will find as the cost
of a solution of the problem. Since the lowest energy level
of the objective term is expected to have some positive value
for typical problems, attempting to reduce the energy of the
objective term can cause the network to violate the con-
straint requirements. This is due to the fact that the network
tries to reduce the objective energy value below the minimal
value necessary for a solution. In order to overcome this
situation, we must allow the network to maintain a reason-
able level of energy in the objective term. The coefficient of
the objective term may be specified before the network begins
adaptive determination of the other coefficients, so that it
always maintains an allowed weight for this energy term.

32 Incremental Energy Evaluation

In order to adjust the weights depending on the distance
of each term from its ground level energy, the corresponding
energy terms should be checked at every stage of evolution.
Since the computational work required to evaluate directly
the current energy level of each term of the energy function
is somewhat expensive, an incremental method has been
devised. It is performed during each update of the neurons.
In this way, the new energy value can be simply computed
without requiring a complete re-evaluation at each change
of activations. The change of energy when the i-th neuron’s
output at time ¢, Vi(¢), is changed at time t+1 to Vi(¢+1) is
derived in Eq. (9), which can be obtained by applying Eq. (2).

AE =E(t+1)~E()
=[—42L VI+ D TV(+1) = VI(t+ DI
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where e is a column vector having 1 as its i~th element
and 0 in others. Since the weight matrix T is symmetric,

Eq. (9) can be simplified by rearrangement to

AE =—a I/e,~’1‘V(t)“zL(A Vie'Te—ave T (g
=—AVT, V(t)—'%'(A V)IT— A VI,

where T is i-th row of the weight matrix T. Again this



equation can be rewritten in the summation form with
indices as

AE=~AV[$T,;V,U)+IJ—'%—(A VRT,  aD

Note that most of the computational work in Eq. (11) has
already been done when updating the neuron activation u;,
as shown in Eq. (4). The only parts requiring additional
computation are the ones outside the summations. In this
way, once the total energy has been computed at the ini-
tialization time of the main procedure, the new energy value
can be efficiently obtained after each update of neurons.

4. Simulation and Result

Ten, twenty and thirty city problems were generated on
a Euclidean space in which the distance between every pair
of cities is determined by the coordinates of the cities. The
data for the 10 city problem is taken from [8], which also
have been used in many reports for the investigation of
Hopfield network simulations. For the other two cases, we
have generated cities within the unit square with a random
distribution to investigate the scaling properties of neural
network solutions of the TSP as the size of the problem
increases.

The energy function [10,16] that was used for our
experimentation is somewhat similar to the original energy
function, Eq. (5), except that the global term, C, has been
replaced by two terms, Cs and (4, such that the constraints
on the rows and columns of the permutation matrix are
enforced separately, rather than together. The effect of this
modification is to distribute the strong inhibitory effect of
the cost term to all the neurons so that the network does
not strongly favor an invalid state in order to reduce the
objective term, representing the objective function. This
energy function has the formulation
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The elements of the connection matrix T and the

excitation vector I, implying the connection weights between
neurons in the network representation, are derived such as

T xi, Claxy(l - 80)" C28.,(1 - 8xy) - C38xy— C46v
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= Csd (85 141+ 8;,i-1) (13)
I = G+ Cy

where & is 1 if i=j, 0 otherwise.

In our experiment, the coefficient of the objective term is
specified before the network begins adaptive determination
of the other coefficients, such that it always maintains this
energy term. Then the network was allowed to adapt all
other coefficients as it evolved. The evolution of the other
coefficients with several different settings of s has been
investigated. As the coefficient of the objective term is set
larger, the quality of solutions found gets better but the
probability of reaching a valid state is lowered, as expected.
A proper value for this coefficient, in the sense of the
percentage of valid solutions produced, shows a slight
difference according to the size of the problem. Empirical
study shows that for larger problems, this value had to be
set lower than for smaller problems. To be able to produce
a similar rate of valid solutions, say 5096, the 30 city problem
required a value of 0.4, while the 10 city problem required
a value of 0.7. With (s set to 0.5 for the 10 city TSP, a typical
curve for the evolution of the other coefficients with
normalization is depicted in (Fig. 2). It is apparent that G
and C; tend toward a common value, as do (3 and Cy. This
is due to the similar role of the terms in the energy function,
i.e. row and column inhibitory terms, and row and column
excitatory terms. Using different fixed values of G, sets of
values for the other coefficients have been obtained, as given
in <Table 1>.

25

2 8

15 ES

1 \\u e

TR g
05 €1 \._\“;Ei

0

0 50 100 150 200 250 300
Epoch
07
g
06 @ oo
C8 o u o
05 bevreeeeeeieir e BB

04 o
l ca 5
§ 03 *”“ww*::;::;:;%;
02 ’|__ -
0 50 100 150 20 - =
Epoch
(Fig. 2) Evolution of energy and coefficient of each term




142 ZBEXEEZ=EX HME-BH H2z(2001.4)

As described in Fig. 1., the output signal of each neuron
can not increase to 1 (ON) exactly without adding some
extra excitatory stimulus, because of the strongly inhibitory
effect caused by a positive objective term energy. Instead,
the neurons compensate for this by relaxing the energy of
each constraint term. As a result, it is seen that the
coefficients, i and (, with only inhibitory terms get
relatively smaller values, while the coefficients, C3 and G,
the only excitatory terms, get relatively larger values. Thus,
quite small inhibitory weights are enough, since inhibitory
weights are intrinsically stronger. A sample of some sets
of coefficients obtained is shown in <Table 1>.

(Table 1) Coefficients obtained for different size of problems

Problem | Objective Inhibitory Excitatory
Size G G O G Gy
10 07 0.065 0.079 0421 0435
20 05 0.097 0.119 0.381 0.403
30 04 0.107 0132 0.368 0.393

Since the final adapted values of the coefficients are those .

which balance the network, the network is rerun using these
final values as fixed coefficients. During simulation, different
random initializations of the neurons result in different
solutions, which is to be expected, since the network is
trying to reach the bottom of the basin of attraction from
which it starts. For each size of problem studied, the 10, 20,
and 30 city TSP, 3 different methods were applied, one with
adaptively obtained coefficients except for the objective
coefficient, one with unit coefficients (G, G, G, C4=1)
except for the objective coefficient, and one with Hopfield
and Tank’s energy function and their coefficient values. For
each method, 100 runs of different neuron-initializations
were made with several different objective coefficients,
except for Hopfield's coefficients. To check the validity of
solutions obtained, a binary decision criterion is used, i.e.
if a neuron’s output is greater than a specified threshold then
it is regarded as ON, otherwise it is regarded as OFF. In
our observations, since the network is following a stable path
to a minimum, either local or global, once the state of the
network has entered a valid solution region under the binary
criterion, the network does not then visit a different valid
solution state.

The data corresponding to solutions obtained by the 3
different methods are listed in <Table 2>, For the method
of adaptive coefficients, all other coefficient values are found
by the network itself except for different fixed values of the

objective coefficient. For the method of unit coefficients,
each initialization is repeatedly tried with increasingly larger
(but fixed for each trial) values of the objective coefficient,
until valid solutions are no longer possible because of the
dominance of the objective term over the constraint terms
in the energy function. For the method of Hopfield's energy
function, 15% of trials have produced valid solutions for the
10 city TSP and no valid solutions were obtained for the
20 and 30 city TSP, because of the high sensitivity of the
network to the parameter values, as reported by other
investigators [11,20]. As expected, the network tended to
produce valid solutions with lower probability but of higher
quality as the objective coefficient was increased. The
comprehensive results obtained for other sets of 10, 20, and
30 city TSP have shown similar results.

(Table 2> Solutions obtained by each method

Problem | Objective | Valid | Shortest | Longest
Method | ™" e |Coefficient| Rate | Length | Length |Ver°
10 0.7 56% 2.69 304 2.76
Adaptive| 20 05 58% 404 557 4,70
30 04 43% 493 8.10 647
10 2.0 41% 278 356 313
Unit 20 1.5 38% 493 6.77 5.86
1.5 41% 6.94 955 8.12
10 500 15% 2.78 378 340
Hopfield | 20 500 0 N/A N/A N/A
30 500 0 N/A N/A N/A

For ease of comparison, the data presented for each
method are based on the case for which valid solutions were
obtained approximately 50% of the time. It is seen that the
solutions with the adaptively obtained coefficients produced
much higher quality solutions than the other two methods

in all cases.

5. Summary and Discussion

The basic problem of the formulation of the energy
function for combinatorial optimization problems is analyzed
with the example of the Traveling Salesman Problem. An
adaptive computation scheme for determining the coeffi~
cients has been devised that makes use of this improved
energy function to obtain good coefficients which can
maintain balance among the energy terms during evolution
of the network. In this way, we obtained good coefficient
values which helped the network to find not only valid but
also high quality solutions. The Hopfield type of neural
network approach to solving combinatorial problems can be



made more practical by avoiding the tedious preprocessing
task of finding the proper coefficients of the energy function.
To reduce the additional computational expense needed to
trace the energy level of the network at every stage in order
to update the coefficients in our method, an efficient incre-
mental update has been devised, which utilizes the compu-
tations done previously for the update of neuron activations.

In spite of the impressive improvements over previous
reports on the Hopfield network, there are some other issues
to point out. To be more practical, the performance in the
sense of solution quality needs to be improved to be more
competitive with currently available problem-tailored meth-
ods [11] for TSP. A possible future research direction for
combinatorial optimization problems would be an extension
of our approach to make all netwark coefficients fully adap-
tive, including the objective coefficient, by compensating for
excessively inhibitory weight connections. This may be
achieved only when the energy function is devised in such
a way that its global minimum corresponds exactly to the
state of an optimal solution.
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