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Fast and Rigid 3D Shape Deformation Based on Moving Least Squares

Lee Jung' - Kim Chang hun"

ABSTRACT

We present a fast 3D shape deformation method that achieves smoothly deformed result by approximating a rigid transformation hased
on moving least squares (MLS). Our modified MLS formulation reduces the computation cost for computing the optimal transformation of
each point and still keeps the rigidity of the deformed results. Even complex geometric shapes are easily, intuitively, and interactively

deformed by manipulating point and ellipsoidal handles.

Keywords: Shape Deformation, Rigid Transformation, Moving Least Squares

1. Introduction

Shape deformation has been an active research topic in
computer graphics. 3D shapes can be deformed generally
by defining some handles, such as control points and line
segments, displacing these handles, and transforming the
target surfaces/polygons appropriately according to the
displacement of the handles. There are two important
issues in shape deformation. One is how to maintain the
rigidity between the original and the transformed one and
the other is the computation overhead for computing the
optimal position of the transformed shape.

As-rigid-as-possible deformation methods are suggested
to minimize the distortion in a deformed shape. One
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appealing approach for achieving as-rigid-as—possible defor-
mation is based on moving least squares (MLS) for-
mulation, which deforms a shape by computing a locally
optimal transformation at each vertex of the shape. The
MLS approach has some nice properties. It generates
smoothly deformed result that is interpolated from user-
specified control handles and keeps the sense of rigidity.
However, finding such optimal rigid transformation is a
non-linear process. So it takes considerable computation
time per vertex.

We present a 3D shape deformation method that
achieves smoothly deformed result by approximating a
rgid transformation based on MLS. (see Fig. 1) Our
approximation method is considerably faster than the
standard MLS formulation (by orders of magnitude) and
also keeps the rigidity of the deformed results.

The point control has been the most popular way of
shape deformation due to its simplicity. We discuss the
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(Fig. 1) A dragon model deformed by our method
(437,645 vertices. 5 point handles)

use of ellipsoid control as deformation metaphor. It
provides flexibility and convenience by specifying rotation
and directional scaling as well as position displacements.

2. Related Work

As mentioned above, the researches on shape de-
formation have focused on two major issues: retaining the
visual quality of the original shape and reducing com-
putation costs for interactive manipulation.

Alexa [1] showed that differential coordinates can re-
present the local features of the shapes independently of
their absolute coordinates. Laplacian coordinates [11, 19, 22],
gradient vectors [21], and pyramid coordinates [15] are
examples of exploiting differential coordinates. The goal
of distortion minimization under large deformation can be
achieved by formulating differential coordinates in a rotation-
invariant way [11, 12]. As-rigid-as-possible transformation
minimizes the global distortion by vielding a locally-optimal
rigid transformation for each triangle or tetrahedron of the
shape [2, 8].

Most numerical solutions using differential coordinates
require a linear system, which encodes the relation between
a point and its neighbors. Since the time complexity of
solving the linear system is O(n2), the computation over-
head problem occurs as the number of points increases.
The size of the matrix can be effectively reduced by
bounding the region of interests [11, 19]. Multiresolution
methods maintain a mesh surface at various resolutions
and reduce the computational cost by exploiting the coarse-
to-fine hierarchical structure [4, 9, 24]. A multi-grid method
is a state-of-the-art technology for solving linear systems.
Recently, the multi-grid method has been shown to be
useful for deforming large surface and volume meshes [18].

The quality of deformation is closely related to the
choice of deformation metaphors. Freeform deformation
(FFD) warps the shape using enclosing lattices [14, 17]. A
skeleton structure can be exploited for deforming arti-
culated shapes [10, 20]. Twisters [13] and swirl sweepers
[3] enable extremely large deformations by controlling the
position and orientation of the handles. Deformation me-
thods using radial basis functions can edit the arbitrary
region of the space with control points and curves [5].
Carefully-designed implicit vector fields can be emploved
for volume-preserving deformation [6].

Our approach is a generalization of the image defor-
mation method using MLS proposed by Schaefer et al.
[16]. A big advantage of MLS is its capability of selec-
ting the type of transformations to be used for deforma-
tion. In 2D space, locally optimal transformations of any
of three popular types (affine, similarity, and rigid) can be
formulated in a closed, linear form. Generalizing this
formulation for 3D shapes[7, 23] is relatively easy with
affine transformations. However, MLS using similarity and
rigid transformations is not easily generalized for 3D
shapes and ends up with non-linear equations. This non-
linear formulation is computationally expensive for inter—
active applications because it should be solved for every
point in the shape. Our method uses a linear approxima-
tion that can be evaluated very efficiently, while retaining
desired properties of MLS. Our method generates smoothly
deformed results those are interpolated from the given
control points (see Fig. 2).

Zhu and Gortler [23] proposed MLS-based deformation
technique, but they used only point handles for deforma-
tion. The point handle is a powerful way of deformation,
because it is very intuitive and simple to manipulate. But the
displacement of a point handle is isotropically propagated
to neighboring points. The iso-surface from a point handle
forms a sphere. So some weird and unexpected results
are often occurred. To avoid such a problem, we also
consider an ellipsoidal handle that has anisotropic iso-
surfaces.

3. Deformation Using Control Points

A 3D shape is defined by a set of points V which
describes spatial positions of points in®®, The shape is
deformed by specifving displacement of control points on
the shape. Let P ={p;.p: ...pm} be a set of control points
and Q ={q.q.--.qy) be the displaced position of the
control points. An affine transformation F(x) = xR+T maps
a point to its deformed position. Function F(X) that
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(Fig. 2) Variously deformed bunny model. An original shape
(a) is deformed by using rigid (b}, similarity
(c), and affine (d) transformations

transforms a point v is defined such that it minimizes

Ee= ) wlFm) - gl 0

where the weight w;j of the i" control point is inversely
proportional to the distance between v and p;:

W= :
T

(2)

Parameter a determines how much the control point
affects its neighboring points (see Fig. 3).

Let p"= Ziw; p/Ziw; and q° = T;w; q;/Z;w; be the weighted
centroids of Pand @, respectively. Equation (1) can be
simplified by removing the translation term T=q -pR
(see Schaefer et al. [2006] for details). Then, the deformed
position v’ for a point v is computed by v'=(v-pR+q
and Equation (1) becomes

E.= ) wlpR -Gl
v Z ilpis—q; 3)

where Pi=pi—p" and §=Q; —q . Assuming that
F.(x) is an affine transformation, we can determine an
optimal 3x3 matrix R that minimizes Equation (3) by a

straightforward generalization of the image deformation
method from Schaefer et al. [16].
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(Fig. 3) The results by changing parameter a

3.1 Rigid Deformations

Suppose that F.(x) is a rigid transformation, that is,
R'R=1 Let B; be a 3x3 orthogonal matrix that transforms
§ to p. The rotation axis of Rjis @ =p; x /Il x Gl and

its angle of rotation is8 =cos™ ;- §/IF:llgl). The
equation (3) becomes
E, =Z\\--,I|ﬁR-ﬁiR,-IF
(4)

= > willBlIR - &

This equation can be approximated by replacing R and
Riby leg(R) and log(R;), respectively. The approximated one
is equivalent to

£=Y ulir-nle,
Z"‘ R )

where rotation vector r=6%€R® and weight

w =wilpil*. The solution that minimizes the approximated
function is

_Zisn
T

r

(6)

We can convert T into a skew-symmetric matrix. The
exponential of the skew-symmetric matrix is the app-
roximation of the optimal rotation R at a point v.
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3.2 Similarity Deformations

Similarity deformation is a subset of affine tran-
sformations that include uniform scaling followed by rigid
transformation. Under the similarity deformation, the de-
formed position v° for a point v is computed by
v'=s(v-p)R+q", where s is a scalar scaling factor. We
determine the scaling factor to minimize

Ep = ) willfillPllsR — syl
) o

Since the rotation and the scaling factors are in-
dependent, we can evaluate the scaling factor separately
such that

o }:t‘"'f 8)

where s; = 1§ l/11p; .

4. Ellipsoidal Handles

The ellipsoidal handle is specified by its two focal
points pi and pf. The distance from the ellipsoidal
handles to any point v on the shape is computed by
elliptic distance, which is the sum of distances to two
focal points.

lIpj = vl + lIpf = vll = 2a. 9

where 2a is the length of the ellipsoid along the major
axis (see Fig. 4).

In order to compute the deformation by ellipsoidal
handles, we map any point v on the space to a certain
pointp] between two focal points. This mapping should
be smooth to produce smooth deformation.

The projected point pfis treated as if it is a point
handle for any given v. The ellipsoidal handle can be
considered as a point handle that moves between two
focal points depending on the position of a shape point to
be deformed. The position of pf is

p:' ___,°+§(\,'p—ofl. (10)

where o is the center of the ellipsoid, 2c is the dis-
tance between two focal points, and Yp is the projection
of v onto the straight line passing through two focal
points. The corresponding deformed position gf is de-
termined such that the inbetweening ratio is preserved:

gy - pill s llqf —qill
8 I (11

The rotation r; can be computed as if a point handle p!
is displaced to its deformed position qf as explained in
Section 3.1. The displacement of an ellipsoidal handle
includes rotation as well as translation. The rotation rf
transforms the direction between two focal points ppf to
the direction qfqf at their deformed positions. Then, the
deformation by a set of ellipsoidal handles is

r‘Ei.u,(n+n')
T (12)

which replaces Equation (6) in Section 3.1.

From Equation (12), the ellipsoidal handle enables us to
manipulate shapes in complex ways, such as bending and
twisting. (see Fig. 5)

5. Topological Distance

The use of Euclidean distances often causes serious
artifacts by disregarding the connectivity and topology of
the target shape. This is a common problem occurred in
space-based deformation approaches.

(Fig. 5) The bending and twisting of the point-sampled box
using ellipsoidal handles
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The influence of the control point p; that is topo-
logically far from v should be reduced even though it is
spatially close to the point. (see Fig. 6) Therefore, we
build the weight function in terms of the shortest path
distance d; between v and p; over the surface mesh or
through the volume of the object to overcome this
problem.

YMisEE (13)

Since weights depend on points in the undeformed
state, the shortest distances can be precomputed. We use
the Bellman-ford algorithm to compute the shortest
distances between control points and all points of the
shape. The time complexity of the Bellman-ford algorithm
isO(ny-€), where 7y is the number of points and ¢ is the
number of connected neighbors at each point. The
memory storage of O(rp'm:) is required to maintain the
precomputed distances, where 7 is the number of control
handles.

6. Experiment Results

We developed an interactive shape deformation system
using C++, MFC and the STL library, and it was tested
on an Intel Core2Quad 2.40 GHz CPU with 2 GB RAM.

From user's point of view, our algorithm is divided
into three steps. These steps are summarized in <Table
1> Step 2 in the table is a preprocessing phase. While
the user drags a control handle with input devices at
runtime, the system updates the deformed shape v
interactively by executing Step 3.

<Table 2> shows that the portion of preprocessing time

(Fig. 6) Comparison between spatial (left) and topological
(right) distance weights
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(Table 1> The computation sequence

Euclidean points Tuiﬂ.:’f_:mf Ellipsoids
Step 1: A shape is loaded
Input : | Vv
Step Z: Control handles are created or removed
Input - P ={p}}
- {d]} =
- - )
fwi} fwi fwi}
by Eq(2) by Eq(13) by Eaq(2)
()
=
(B
Step 3: Control handles are dragged
Input : 9 ={qi}
| - R
T
@i
{n}
v
Ouiput v

{Table 2> Computation costs. EP: Euclidean distance point
handles, TP: Topological distance point handles,
and E: ellipsoidal handles

Model Bunny Dragon Armadillo
Points 3BM7 3B320 20002
Handle SEP 5TP 5TP 5E
Step 2 (di) - 654 248 -
Step 2 259 276 21.2 310
Total %9 93.0 460 310
Step 3 BT 46.3 57 276
Unit time 2.5e-4 2584 25e-4 27e-4
Pre-proc. 6% 66% 64% 53%

in the total computation time. The performance is mainly
affected by the type of control handles. The use of
topological distances requires more computation at Step 2
because the shortest distances should be computed at the
preprocessing phase.

<Table 3> shows that the computation time is linearly
proportional to the numbers of points ™ and the control
handlesn,. The unit time is the runtime computation cost
divided by "= This linear runtime computation cost
allows us to determine the maximum number of points
that can be interactively manipulated at a desired frame
rate. For example, if we want to manipulate a shape with
5 control points at 25 FPS, the maximum number of
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{Table 3> Computation costs depending on the numbers of
points and control handles

#points(p) #handleth) #time Unit time
10,000 5 119 2.38e-4
20,000 5 246 2.46e-4
40,000 5 50.6 253e-4
80,000 5 998 2.49%-4
80,000 10 190.7 2.38e-4
80,000 15 2814 2.34e-4

3,000,000 5 32730 2184

points is about 32,000.

The memory requirement is also linearly proportional
to the numbers of points and the control handles. We
must maintain {w;} and ;} for each control handle. Scalar
values are represented as 4 byte floating points, and a
point in 3D space has X, v and z elements. The total
memory requirement is 24mp+ 16npny

7. Discussion

We present a fast 3D shape deformation method that
approximates MLS. Our method inherits the nice properties
of MLS-based deformation techniques. Our result is
smoothly deformed and keeps the rigidity of the shape.
The control handles are interpolated according to the
various types of transformations.

Many shape deformation methods has suffered from
solving nxn linear systems. LU decomposition is the
most popular method for solving the linear system,
because it is computed at a preprocessing phase and then
the linear system can be solved efficiently at runtime
using forward and backward substitutions. The time and
space complexity of solving a linear system are 0(%3),
This complexity is much heavier than ours, O(ny:na),
because n; is usually much smaller than 7. Shi et al
[18] compared the performance of several linear system
solvers. They reported that the fastest multi-grid solver
takes about 40,000ms for manipulating 3.44e6 points and
740MB memory storage is required. Our method takes
just 3,273 ms with 5 control handles for manipulating 3e6
points <see Table 3> and 537 MB memory storage is
required. Our method shows the much better performance
than the previous methods.

The dragon model in (Fig. 1) consists of 437,645 points
and 871414 faces. The computation cost (68ms) for
deforming the model is relatively smaller than the com-
putation cost (153ms) for rendering the model. So we can
interactively manipulate it. The (Fig. 7-9) show us the

(Fig. 7) Deformed armadillo model
(20,002 points, 13 ellipsoidal handles and 2 point handles)

(Fig. 8) Deformed horse model
(48,485 points. 13 ellipsoidal handles)
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(Fig. 9) Facial deformation with a set of point handles

various deformed results by our method. Especially, (Fig.
7) shows the character animation results by specifying
and manipulating handles like its skeleton.
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