HIE

H &7 B4 A&RsdA A& 24 A2

718 BAF AIAHISION ME 2H side 9

o

HAHg =A

RN 4
2 o

€ v HE714 £43 AladoA Hd&(Election) EAE MPsted YR Hado "<‘_‘°ﬂ o8 =3t @
o o] =29 H4e vEsH A AagoA M BAE ddsted 4 4 2% 23FAE RAE Hohy:
o ek WA HEr)H EY AagelM dF 249 gol(Consensus) TAlo) tlE BEAS Eostn AE TAE §9
AR Of ojfE EAYE Bk B dUsA FHAY, NE BAE Hdsed Wad sbg 98 ag 59 3
Ao fAG 23 23 FAololof G Ao, o Bo FAE ddsied 4o d 1Y 49 1Y 23 ARy &y
3 #E Aol

The Minimum Requirements for Solving Election Problem
in Asynchronous Distributed Systems

Sung-Hoon Park!

ABSTRACT

This paper is about the minimum requirements to solve the Election problem in asynchronous distributed systems. The
focus of the paper is to find out what failure detector is the weakest one to solve the Election problem. We first discuss
the relationship between the Election problem and the Consensus problem in asynchronous distributed systems with
unreliable failure detectors and show that the Election problem is harder than the Consensus problem. More precisely, the
weakest failure detector that is needed to solve this problem is a Perfect Failure Detector, which is strictly stronger than
the weakest failure detector that is needed to solve Consensus.

1. Introduction

The Leader Election problem [1] requires that an uni-
que leader be elected from a given set of processes. The
problem has been widely studied in the research com-
munity[2-6]. One reason for this wide interest is that
many distributed protocols need an election protocol.

In spite of such a wide research, the problem is

17338 4 dMEYR HRES s
EEHT 20009 39 179, AR 2000‘:4_ 1289 59

known to be unsolvable in asynchronous distributed
systems with crash failures. It follows from so-called
FLP results [7]. The proof of the impossibility of Con-
sensus in [7] assumes that it is impossible for a process
to determine whether another process has crashed, or
is just very slow. This assumption is widely cited as
the “reason” for the impossibility result.

There are other problems that cannot be solved in
asynchronous distributed systems with crash failures
for the same intuitive reason that Consensus cannot be

3816 St=RBM2ES =2 H7H H1222(2000.12)

solved. In particular, the Leader Election problem cannot
be solved if a crashed process cannot be distinguished
from a slow process.

Consensus and Election are similar problems in that
they are both agreement problems. The so—called FLP
impossibility result, which states that it is impossible
to solve any non-trivial agreement in an asynchronous
system even with a single crash failure, applies to both
problems [7]. The starting point of this paper is the
fundamental result of Chandra and Toueg [8], which
states that Consensus is solvable in asynchronous sys-
tems with unreliable failure detectors.

An interesting question is then what failure detector
is the weakest one to solve the Election problem. As
the answer to this question, the weakest failure detector
that is needed to solve this problem is a Perfect Failure
Detector, which is strictly stronger than the weakest
failure detector that is needed to solve Consensus. But
this is not surprising because the Election problem has
been considered harder than Consensus [9].

However, in contrast to initial intuition, the reason
Election is harder than Consensus is not its Liveness
condition. The difficulty in solving Election is actually
its Safety condition (all the nodes connected the system
never disagree on the leader when the nodes are in a
state of normal operation). This condition requires pre-
cise knowledge about failures which unreliable failure
detectors cannot provide.

The rest of the paper is organized as follows. In
section 2 we describe motivation and related works. In
section 3 we describe our system model. Section 4
shows that Leader Election is harder than Consensus
and the weakest failure detector for solving election is
the Perfect Failure Detector. Finally, Section 5
summarizes the main contributions of this paper and

discusses related and future work.

2. Motivations and Related Works

It was shown in [7] that the Consensus problem
cannot be solved in an asynchronous system if even a
single crash failure can occur. The intuition behind this

widely cited result is that in an asynchronous system,
it is impossible for a process to distinguish between
another process that has crashed and one that is merely
very slow. The consequences of this result have been
enormous, because most real distributed systems today
can be characterized as asynchronous, and Consensus
is an important problem to be solveci if the system is
to tolerate failures.

As a result, the Consensus problem has frequently
been used as a vardstick of computability in asynchro-
nous fault-tolerant distributed systems. That means
that if any problem is harder than Consensus, it also
cannot be solved in asynchronous systems.

The asynchronous model of computation is especially
popular in practice because unpredictable workloads are
sources of asynchrony in many real systems. Therefore
rendering any synchrony assumption is valid only
probabilistically. Thus, the impossibility of achieving
Consensus reveals a serious limitation of this model for
fault-tolerant applications such as the Election problem.
Because Consensus is such a fundamental problem,
researchers have investigated various ways of cir-
cumventing the impossibility.

Actually, the main difficulty in solving such a prob-
lem in presence of process crashes lies in the detection
of crashes. As a way of getting around the impossibility
of Consensus, Chandra and Toug extended the asyn-
chronous model of computation with unreliable failure
detectors and showed that the Consensus problem is
solvable even with unreliable failure detectors [10].

If the Election problem is also solvable in asynchro-
nous systems with unreliable failure detectors, it has
an important consequence since the failure detection of
a process is unreliable in real systems. To confirm
whether Election is solvable in asynchronous systems
with unreliable failure detectors, we compare Election

with Consensus using a reduction protocol.

3. Model and Definitions

Our model of asynchronous computation with failure
detection is the one described in [7]. In the following,

we only recall some informal definitions and results that
are needed in this paper.

3.1 Processes

We consider a distributed system composed of a finite
set of processes 8 = {py, pz, **, pn} completely connect-
ed through a set of channels. Communication is by mes-
sage passing, asynchronous and reliable. Processes fail
by crashing; Byzantine failures are not considered.

Asynchrony means that there is no bound on com-
munication delays or process relative speeds. A reliable
channel ensures that a message, sent by a process pi
to a process pj, is eventually received by p; if pi and
p; are correct (ie. do not crash).

To simplify the presentation of the model, it is
convenient to assume the existence of a discrete global
clock. This is merely a fictional device inaccessible to
processes. The range of clock ticks is the set of natural
numbers. A history of a process pi €2 is a sequence

0 1 2
of events b = e - e * ¢

e/, where e/ denotes an
events of process p; occurred at time k. Histories of
correct processes are infinite. If not infinite, the process
history of p; terminates with the event crash;* (process
Di crashes at time k). Processes can fail at any time,
and we use f to denote the number of processes that
may crash. We consider systems where at least one
process corrects (ie £ < |2l).

A failure detector is a distributed oracle which gives
hints on failed processes. We consider algorithms that
use failure detectors. An algorithm defines a set of runs,
and a run of algorithm A using a failure detector D is
atuple R=<F, H, I, S, T> : I is an initial configuration
of A; S is an infinite sequence of events of A (made
of process histories); T'is a list of increasing time values
indicating when each event in S occurred; F is failure
pattern that denotes the set F(¢) of processes that have
crashed at any time ¢ H is a failure detector history,
which gives each process p and at any time ¢, a
(possibly false} view H(p,t) of the failure pattern :
Hi(p,t) denotes a set of processes, and ¢ H(p,t) means
that process p suspects process g at time t.

L AIABISIONA ME BH SHEg 2T 2L 8o T 3817

AT
0

32 Failure detector classes

Failure detectors are abstractly characterized by
completeness and accuracy properties [10]. Complete~
ness characterizes the degree to which crashed process-
es are permanently suspected by correct processes. Ac—
curacy restricts the false suspicions that a process can
make.

Two completeness properties have been identified.
Strong Completeness, i.e. there is a time after which
every process that crashes is permanently suspected by
every correct process, and Weak Completeness, ie.
there is a time after which every process that crashes
is permanently suspected by some correct process.

Four accuracy properties have been identified. Strong
Accuracy, i.e. no process is never suspected before it
crashes. Weak Accuracy, i.e. some correct process is
never suspected. Eventual Strong Accuracy (OStrong),
i.e. there is a time after which correct processes are not
suspected by any correct process; and Eventual Weak
Accuracy (OWeak), i.e. there is a time after which some
correct process is never suspected by any correct
process. A failure detector class is a set of failure detec-
tors characterized by the same completeness and the
same accuracy properties (Figure 1).

For example, the failure detector class P, called
Perfect Failure Detector, is the set of failure detectors
characterized by Strong Completeness and Strong Ac-
curacy. Failure detectors characterized by Strong Ac-
curacy are reliable : no false suspicions are made. Oth-
erwise, they are unreliable

Completeness Accuracy
Strong Weak | OStrong | OWeak
Strong P S OP o8
Weak Q W <Q 4

(Figure 1) Failure detector ciasses

For example, failure detectors of S, called Strong
Failure Detector, are unreliable, whereas the failure de-
tectors of P are reliable.

3.3 Reducibility and transformation
An algorithm A solves a problem B if every run of

B8 RFENEIEE =2A HTH F123(2000.12)

satisfies the specification of B. A problem B is said to
be solvable with a class C if there is an algorithm which
solves B using any failure detector of C. A problem B;
is said to be reducible to a problem B: with class C,
if any algorithm that solves Bz with C can be trans-
formed to solve B; with C. If B; is not reducible to Bz,
we say that B; is harder than B..

A failure detector class C; is said to be stronger than
a class G, (written C; = (), if there is an algorithm
which, using any failure detector of C, can emulate a
failure detector of Co. Hence if C; is stronger than Cz
and a problem B is solvable with C, then B is solvable
with C. The following relations are obvious : P = Q,
P25 OP20Q OP 2085,5S 2W, 08 20OW,
Q =W, and &Q = OW. As it has been shown that any
failure detector with Weak Completeness can be trans-
formed into a failure detector with Strong Complete-
ness [10), we also have the following relations : Q =
P, 0Q =2 COP, W =S and OW = OS. Classes S and
OP are incomparable.

34 Consensus

In the Consensus problem (or simply Consensus),
every participant proposes an input value, and correct
participants must eventually decide on some common
output value [111. Consensus is specified by the follow-
ing conditions.

® Agreement : no two correct participant decide
different values;

e Uniform-Validity : if a participant decides v, then
v must have been proposed by some participant;

® Termination ' every correct participant eventually
decide.

Chandra and Toueg have stated that Consensus is
solvable with OP or S [10].

4. The Weakest Failure Detector for Solving the
Election Problem

In this section, we confirm that the Election problem
is strictly harder than the Consensus problem and the

Strong Accuracy property of a failure detector is needed
to solve Election problem. What is the weakest failure
detector that is needed to solve this problem in
asynchronous distributed systems? As the answer to
this question, we show that a Perfect Failure Detector
is the weakest failure detector for solving Election.

4.1 The Election Problem
The Election Problem is specified by the following
two properties.

® Safety . All processes connected the system never
disagree on a leader when the nodes are in a state
of normal operation.

® Ljveness : All processes should eventually prog-
ress to be in a state in which all processes con-

nected to the system agree to the only one leader.

An election protocol is a protocol that generates runs
that satisfies the Election specification.

42 \mpossibility of solving Election Problem with unre-
liable Failure Detectors

Though OP or S are sufficient to solve Consensus,
it is not sufficient to solve Election. Therefore the
Election problem is strictly harder than the Consensus
problem since even when assuming a single crash,
unreliable failure detectors are not strong enough to
solve election. In this section, we show that Strong
Accuracy is necessary for solving Election, and it is
sufficient for solving Election.

Theorem 1 If f> 0, Election can not be solved with
either OP or S.

Proof : Consider a failure detector D of OP. We
assume for a contradiction that there exists a deter-
ministic election protocol E that can be combined with
a failure detector D such that E + D is also an election
protocol. Consider an algorithm A combined with E +
D which solves Election and a run R = < F, Hp, I,
S, T > of A. We assume that only two processes P;
and P; are correct and all messages from them are

HIS7IH &4 ALHGI0IM M58 2 S8 2 24 e = 3819

delayed until after ¢ in R.

Consider that P; is a leader at time (R, k). At time
(R, k) where (k + t) > ki > k, the process P; falsely
suspects other process P; in some run. At time (R, k2)
where kz > ki, P; considers itself a leader by delaying
the receipt of all messages sent by P; until k3, where
(k + t) > ks > k;. Thus in (R, k3) both P; and P; consider
themselves the leader, violating the assumption that A
is an election protocol.

But after a time ¢, all the processes except P; and
P; are suspected. Hence there is a time after which
every process that crashes is permanently suspected by
every correct process. So Hp satisfies Strong Com-
pleteness. Consider Accuracy. After a time ¢, P; and P;
are never suspected in Hp. Hence Hp satisfies Eventual
Strong Accuracy. This is a contradiction. []

Theorem 2 A weakest failure detector to solve
Election is the Perfect Failure Detec-
tor.

Proof : It is shown in [10] that a failure detector
satisfying Strong Accuracy and Strong Completeness
can be used to implement a Perfect Failure Detector.
Strong Accuracy has processes never suspect a correct
process - suspicions are never false. Every correct
process always detects a leader failure only when the
leader crashes using a Perfect Failure Detector. After
an election Is started, the problem of electing only one
process as a leader is a kind of consensus problem;
hence this problem is easily solved with a Strong
Failure Detector that is less strong than Perfect Failure
detectors. That means that every correct process
eventually gets into the state in which it considers only
one process to be a leader. Therefore a Perfect Failure
Detector is the weakest failure detector that is sufficient
to solve Election. []

5. Concluding Remarks

The importance of this paper is in extending the
applicability field of the results, which Chandra and
Toueg have studied on solving problems, into the

Election problem in asynchronous system (with crash
failures and reliable channels) augmented with
unreliable failure detectors. The applicability of these
results to problems other than Consensus has been
discussed in [8, 11-14]. To our knowledge, it is however
the first time that Election problems are discussed in
asynchronous systems with unreliable failure detectors.

More specifically, what is the weakest failure detector
for solving the Election problem in the asynchronous
system? As an answer to this question, we showed that
Perfect failure Detector P is the weakest failure detector
to solve the Election problem in asynchronous systems.
Though P or S are sufficient to solve Consensus, we
showed that they are not sufficient to solve Election.
Therefore the Election problem is strictly harder than
the Consensus problem even when assuming a single
crash.

Determining that a problem Pb; is harder than a
problem Ph; has a very important practical consequence,
namely, the cost of solving Pb; cannot be less than that
of solving Ph.,. That means that the cost of solving
Election cannot be less than that of solving Consensus.

We are not the first to show that there are problems
harder than Consensus. The first such result that we
are aware of is [15] in which the authors show that
Non-Blocking Atomic Commitment (NB~AC) cannot be
implemented with the weakest failure detector that can
implement Consensus. This problem arises when
transactions update data in a distributed system and the
termination of transactions should be coordinated
among all participants if data consistency is to be
preserved even in the presence of failures [16]. It
resembles the Election problem in that NB-AC is harder
than Consensus.

To solve the NB-AC problem with an unreliable
failure detector, they propose Non-Blocking Weak
Atomic Commitment (NB-WAC) protocol and show
that a failure detector weaker than a Perfect Failure
Detector is strong enough to solve Non-Blocking Weak
Atomic Commitment (NB-WAC). Hence, NB-AC
appears to be harder than Consensus, but NB-WAC is
easier than Election.

We believe that there are problems harder than

P20 SETIEMLES =R MTH H12=(2000.12)

Election as well. One can define failure detectors that
are stronger than a Perfect Failure Detector. For
example, we can define a failure detector that is not only
perfect but also guarantees that a failure of a process
is detected only after all messages that it has sent have
been received by the detecting process. This failure
detector is required by some problems, including the
non-blocking version of the asynchronous Primary-
Backup problem [16].

References

1] G. LeLann, “Distributed systemstowards a formal
approach, Information Processing 77,” B. Gilchrist,
Ed. NorthHolland, 1977.

2] H. Garcia-Molian, “Elections in a distributed com~
puting system, IEEE Transactions on Computers,”
Vol.31, No.l, pp.49-59, 1982.

[3]1 H. Abu-Amara and J. Lokre, “Election in asyn-
chronous complete networks with intermittent link
failures,” IEEE Transactions on Computers, Vol.43,
No.7, pp.778-788, 1994.

[4] H. M. Sayeed, M. Abu-Amara and H. Abu-Avara,
“Optimal asynchronous agreement and leader elec-
tion algorithm for complete networks with byzan-
tine faulty links,” Distributed Computing, Vol.9,
No.3, pp.147-156, 1995,

[5] J. Brunekreef, J. P. Katoen, R. Koymans and S.
Mauw, “Design and analysis of dynamic leader e-
lection protocols in broadcast networks,” Distrib-
uted Computing, Vol.9, No.4, pp.157-171, 19%.

[6] G. Singh, “Leader election in the presence of link
failures,” IEEE Transactions on Parallel and Dis~
tributed Svstems, Vol.7, No.3, pp.231-236, March
1996.

[7] M. Fischer, N. Lynch, and M. Paterson, “Impossi-
bility of Distributed Consensus with One Faulty
Process,” Journal of the ACM, Vol.32, No.l, pp.
374-382, 1985,

[8] T. Chandra and S. Toueg, “Unreliable failure
detectors for reliable distributed systems,” Techni~
cal Report, Department of computer Science, Cor-
nell Univ,, 1994.

[9] D. Doleb and R Strong, “A Simple Model For A-
greement in Distributed Systems,” In Fault-Tol-
erant Distributed computing, B. Simons and A.
Spector ed, Springer Verlag (LNCS 448), pp.42-59,
1987.

[10] T. Chandra, V. Hadzilacos and S. Toueg, “The
Weakest Failure Detector for Solving Consensus,”
Proceedings of the 11th ACM Symposium on Prin-
ciples of Distributed Computing, ACM press, pp.
147-158, 1992.

[11] R. Guerraoui and A. Schiper, “Transaction model
vs Virtual Synchrony model : bridging the gap,” In
Distributed Systems : From Theory to Practice, K.
Birman, F. Mattern and A. Schiper ed, Springer
Verlag (LNCS 938), pp.121-132, 1995.

[12] V. Hadzilacos, “On the relationship between the
atomic commitment and consensus problems,” In
Fault-Tolerant Distributed Computing, B. Simons
and A. spector ed, Springer Verlag (LNCS 448),
pp.201-208, 1987.

[13] L. Sabel and K. Marzullo, “Election vs. Consensus
in Asynchronous Systems,” Technical Report TR95-
1488, cornell Univ, 1995.

[14] A. Schiper and A. Sandoz, “Primary Partition
Virtually-Synchronous Communication harder than
consensus,” In Proceedings of the 8th Workshop
on Distributed Algorithms, 1994

{15] Rachid Guerraoui, “Revisiting the relationship
between non-blocking atomic commitment and con-
sensus,” In Proceedings of the 10th International
Workshop on Distributed Algorithms, Springer
Verlag (LNCS 857), 1996.

[16] P. A. Bernstein, V. Hadzilacos, and N. Goodman,
“Concurrency Control and Recovery in Database
Systems,” Addison Wesley, 1987.

gz

e-mail : spark@nsu.ac.kr

1982y u st A3 ohst
TAEN E4(BAGA

19923 7= Indiana Univ. i34
AAANLS Ed(olt
Hap

1994 v]Z Indiana Univ. Wiehd A=A 4Me}al wkap
}4 57

20004 Zethotm chete AFE LS EA(] A

19821 ~1989\d FAL1E 71824 OARF S/'W
N 93

199511 ~ 19963 EFAAREA JledFi 2%

19963 ~dA FA&sa AFHEH 2ae

Aol SR E, AEHEA 2, FYAE,

|l SHFH

