2076 St=FEX2|StT =X M7 H7Z(2000.7

Edo] JY ZIEL AZE 1101 AR =B g A FA P e Awke Fa g
u2hA iiﬂ’ﬂ"i HE 7Fed 2ZEH] s Edo] e Aot HUAHY AZEM] MY 2dg Awslr] 9
d, & =E& A2dd 2% dolHd g “:’4_“”4 AZEYo] MR 45 2d2A o WEE AYen, 14709 e
2ZEqo] ZRAERNE o 2% HolHE E43e 1 £84¢ ARaATh AL d2gEHY v A3Y 2dE
I BAH AZEMo] A 4 mdEde 4% vie 9T A dF o JhReadn. 1 A% 2dEE 9w
L2 Ged g ATYE 0 ol gy AZEYo] TRAEH e ¢ F AAT

Software Reliability Prediction Using Predictive Filter
Joong-Yang Park'- Sang-Un Lee'' - Jae-Heung Park''!

ABSTRACT

Almost all existing software reliability models are based on the assumptions of the software usage and software failure
process. There, therefore, is no universally applicable software reliability model. To develop a universal software reliability
model, this paper suggests the predictive filter as a general software reliability prediction model for time domain failure data.
Its usefulness is empirically verified by analyzing the failure data sets obtained from 14 different software projects. Based
on the average relative prediction error, the suggested predictive filter is compared with other well-known neural network
models and statistical software reliability growth models. Experimental results show that the predictive filter generally results

in a simple mode! and adapts well across different software projects.

1. Introduction

In recent years, there is a growing use of computer
systems and software systems have been most im-
portant parts of many complex and critical computer
systems. Since failures of a software system could pro-
duce severe consequences in terms of human life, envi-
ronment impact or economical losses, software systems
are required to be sufficiently reliable for their intended
purposes. A software system is said to be reliable if

tA 3 4 34aqge g%
38 o Yo ot dxA e
ARG R e L s e i
EEASF 20009 2¥ 159, AAMER 2000 79 8Y

it performs failure-free operation for a specific exposure
period under a wide variety of usage environments and
operations. To many customers, software reliability is
one of the most important aspects of software quality.
Measurement of software reliability includes reliability
estimation and reliability prediction activities. A number
of software reliability models has been developed for
estimating and predicting the software reliability from
the failure data obtained during testing and operational
phases. Predictability of a software reliability model is
the capability of the model to predict future behaviors
from present and past failure behaviors. Ramamoorthy
and Bastani [16] classifies software reliability models

according to the development phases of software life-
cycle, while Goel [6] divides them according to the
nature of failure process into time-between-failures
models, failure-count models, fault seeding models and
input domain-based models. We consider software re-
liability models applicable in the testing and debugging
phase. Since fault corrections are necessary in the test-
ing and debugging phase, software reliability growth
models (SRGMs) taking fault corrections into account
are mainly used in this phase. Most of time-between—
failures models and failure- count models belong to the
class of SRGMs. Such SRGMs offer overall reliability
assessment and prediction and are also used in deter—
mining an appropriate release time. SRGMs usually
define the software reliability as

Ry = Pr(no failure occurs within [0, T']),

where T is the exposure period whose time unit is the
calendar or execution time. It is usually assumed that
R follows a certain probability distribution, for exam-

T
ple, Rr= exp (— fo 2(t)a’t), where z(#) is the failure

rate function. Once the failure rate function is estimated,
the expected time to next failure and expected number
of failures up to a certain specified time can be predicted
and then used as reliability measures.

Almost all existing SRGMs are based on the
assumptions with respect to the nature of software faults
and the stochastic behavior of failures. They include
several parameters to reflect on various assumptions on
the software development and usage environment. This
implies that there is no universally applicable SRGM
which can be trusted in all circumstances [3]. Selection
of a particular SRGM is thus very important in practical
applications. Several approaches for selecting the best
SRGM were suggested by Abdel- Ghaly, Chan and
Littlewood [1] and Brocklehurst, Chan, Littlewood and
Snell [3]. However, it is still desirable to develop soft-
ware reliability models that do not require any as-
sumptions with respect to the development and usage
environment. If we have a system that develops its own
model based on the past failure history of software

CIZEEE 0188 2ZEJN MM o= 2077

system, such assumptions can be eliminated. Thus a
new approach using neural networks has been intro-
duced by Karunanithi, Whitley and Malaiya [7, 8]. The
neural network requires only failure history as input and
no assumptions are made a priori. Karunanithi, Whitley
and Malaiya [7, 8] evaluated the predictive accuracy of
feedforward networks (FFNs) and Jordan networks and
then compared with several well-known statistical
SRGMs for the failure count data. Park, Lee and Park
[14] also performed a similar research for the failure time
data.

In this paper we suggest a predictive filter for pre-
dicting software reliability based on the time domain
failure data (both failure count data and failure time
data). The proposed predictive filter is derived from the
adaptive filter. The predictive filter is simple and its
performance is better than those of the neural networks
mentioned in the previous paragraph. Section 2 first
briefly reviews some related works. The predictive filter
and corresponding training regimes are presented in
Section 3. Section 4 investigates its performance empir-
ically and compares with other neural network models
and SRGMs. Performance evaluations and comparisons
are conducted by computing the next-step prediction
error. Finally conclusions are presented in Section 5.

2. Related Works and Motivation

An important feature of neural networks is the ability
to leam from their environment and through such
learning improvement in performance to some extent is
achieved. (Refer to Lippman [9] for currently available
neural network models and learning procedures.) Thus
neural networks have been applied to parameter es-
timation and prediction of future outcomes. Two well-
known classes suitable for prediction are FFNs and
recurrent networks. However, only a few applications
of neural networks to software reliability prediction
have appeared in the literature. Karunanithi, Whitley
and Malaiya [7, 8] modeled software reliability growth
with neural networks. They have shown that FFNs and
partial recurrent networks (Elman and Jordan net-

2078 Sr=EEXNE (SR =FX M7H M7Z2000.71

works) can be applied to software reliability prediction.

Suppose that pairs (¢ m,),i=1,2,, n are gath-
ered from the software testing, where m; denotes the
cumulative number of failures found up to time ¢. A
data consisting of pairs (¢, m,) is called the failure
count data. Karunanithi, Whitley and Malaiya [7,&]
studied FFNs and partial recurrent networks for pre-
dicting m.,, p=1,2, - assuming that (¢;, m), i=
1,2,++, I are available for training. The following two

training regimes were considered.

(1) Generalization training : each input ¢ is asso-
ciated with target m, .
(2) Prediction training : each input #;_, is associated

with target m;.

The predictive accuracy of FFNs and partial re-
current networks were evaluated and then compared
with those of several well-known statistical SRGMs.
The data sets collected from 14 different software
systems were used for evaluating and comparing the
predictive accuracy. Brief description of the 14 data sets
(Referred to as Datal, Data2, -+ in Karunanithi,
Whitley and Malaiya [8] and herein.) is reproduced in
<Table 1>. They have shown that FFNs and partial
recurrent networks adapt well across different data sets
and exhibit a better end-point predictive accuracy.
However, they were unable to make any strong con-
clusions about the relative advantages for next-step
predictions.

The observation time intervals, ¢;~— £,-, are variable
for Datad and Datab, but constant for other data sets.
Another noteworthy point is that Data2, Datall, Datal?2,
and Datal3 consist of the pairs (7, s;), i=1,2, - where
¢ is the failure sequence number and s; is the ith
failure time. Such data sets are called the failure time
data. Karunanithi, Whitley and Malaiya [7, 8] presented
the failure times as input to the network and then
associated them with corresponding failure sequence
number as target. In the case of failure time data, the

failure times are the observations of stochastic failure

Table 1) Brief Description of 14 Data Sets

%ﬁa R:;Ere- g%t?ll Ciggug; Myl n Application
| w7 [
Ptz 13| 270 e ail“gzm 136| 136 Realtime Control
Pl 1 | 000 comure | 45| 21| Oncline Data Eniry
ol ol e e
D;‘ta (4] | 35000 C;ﬁ“gzm 29| 10 | Hardware Control
i] o B
D;ta 9l | 870000 Coiiitl“]’)zm 535| 109 Realtime Control
oo |l o |
Dflta @ | 1000 Tiif“l;‘;a 118| 118 Flight Dynamic
Dl"zta @ | 250 T;i‘“];‘;m 180| 180| Flight Dynamic
Df;a 2 | 3850 Tif“g‘;m 213| 213 | Flight Dynamic
P g e Cozf‘]it’“gim 26| 46 | Realtime Control

process. It is not reasonable to analyze and predict the
failure sequence numbers. What we need to predict is
not the failure sequence number but rather the sto-
chastic process producing the failure times. Therefore,
the above two training regimes are not appropriate for
the failure time data. Park, Lee and Park [15] considered
FFNs and 4 training regimes for the failure time data.

(1) Each input £ is associated with target x; .
(2) Each input ¢ is associated with target x4, .
(3) Each input ¢ is associated with target s; .

(4) Etach input ? is associated with target s;y; .

Here x,=s;—s,;-, for i=1,2, . Training regimes
{1} and (3) are for generalization, while training regimes
(2) and (4) are for prediction. It was empirically shown
that FFNs with training regimes (3) and (4) work well

for software reliability prediction and their predictive
capability is not influenced much by the training data
set size. The suggested approach was shown to be
robust to outliers. However, more hidden neurons are
required than the approach considered by Karunanithi,
Whitley and Malaiya [6, 7).

A good predictive model should predict future
behavior well, compute useful quantities, and be simple
and widely applicabie. One of such neural networks is
the adaptive filter. The adaptive filter is simple and
expected to provide good next-step prediction. It has
been known for following two outstanding features :
the ability to learn systems with unknown parameters
and signals with unknown statistics, and the ability to
track an environment which is varying with time. Refer
to Widrow and Sterns [20] for details of the adaptive
filter. We will consider the adaptive filter as a candidate
network for software reliability prediction in the next
section.

3. Predictive Filter for Software Reliability
Prediction

An adaptive filter is created by combining a tapped
delay line (TDL) with an ADALINE (Adaptive Linear
Neuron Network) [5]. The ADALINE network is similar
to the perceptron, but their transfer function is linear
rather than hard-limiting. This network can only solve
linearly separable problems. To solve a nonlinear prob-
lems, we need a new component, the TDL, to make full

Inputx;

X1
o] X_
X_, T» > ——-—-»j)l
i d

w, b » = Zw,c.‘:q_,c +b

k=0

Xid

(Fig. 1) Adaptive Filter

OI=SEEE OIBS 2ZERIN MEIM oz 2079

use of the ADALINE network. The adaptive filter can
automatically adapt in the face of environment changes.

(Fig. 1) shows a simple description of the adaptive filter,
d

in which x; is the input signal at time i, ;= go
wyx;_,+ bis the corresponding output, d is the
number of delays, w;'s are adaptive weights, and &
is the bias {or threshold).

This network is usually referred to in the digital
signal processing field as a finite impulse response
(FIR) filter (also known as input-delay neural network).
This architecture has been used quite successfully in
a number of practical applications including speech
recognition and time series prediction [4]. If we adjust
the adaptive weights in a way that the corresponding
output ¥; matches as best as possible a desired signal
(target) y;, the adaptive filter can predict the future
values of the signal. We thus use the network described
in (Fig. 2) for the failure count data. This network may
be called the predictive filter, which is a modified
adaptive filter. Specific modifications are : (1) m; is not
connected to the linear neuron filter ; (2) errors are
computed and backpropagated to adjust connection

weights.
TDL
Input m —o
E Linear Layer .
m, 4 :} m
]| X B%
W, " .
ma g T s A & =m—
W, j
5 b | AGust weights
"y

a4
=3 wm_+b
foel
(Fig. 2) Predictive Filter
The cumulative number of failures found up to ¢;,

g
is then predicted by ;= ;} wym;.,+ b, which is a

linear combination of m;_,, £=1,2,--,d. This implies

2080 S=HEXEIET =X MTH M7Z(20007)

that the predictive filter primarily aims the next-step
prediction. However, if we use #; as the input signal
at time / and m,_,’s as the corresponding delayed
siénal s, we can obtain ., from the predictive filter.
Repetition of this procedure enables us to predict #2,+ ,,
k=0,1,--- at time 7—1. At this time we should note
that the observation time intervals, ¢ —¢,-;, are re-
quired to be constant for the application of the above
predictive filter. On the other hand, we need to replace
m; in (Fig, 2) with s, for applying the predictive filter
d

to the failure time data. That is, s;= /;1 wesi—p+ b

and e, = s;— s;.

4, Prediction Experiments and Results

This section empirically studies predictive accuracy
of the predictive filter suggested in the previous section.
In order to provide reasonable comparisons and analy -
ses on the predictive accuracy of various models, it is
necessary to use as many data sets as possible. Finding
a large collection of data sets from different software
projects is not an easy task because many software
companies consider their products’ failure history as a
classified record. The data sets described in Section 2,
which were collected from various software systems
and development environments, are used in our exper-
iment. Datal, Data3-10, and Datal4 are the failure count
data and Data2, and Datall-13 are the failure time data.

In comparing different models, it is necessary to
quantify their prediction accuracy in terms of some
meaningful measures. Three distinct approaches that
are very common in software reliability research com-
munity are goodness-of-fit, next-step predictability,
and variable-term predictability [8, 10]. Using these
approaches, a two—component predictability measure
consisting of average relative prediction error (AE)
and average bias (AB) was proposed by Malaiya,
Karunanithi, and Verma [10]. AE is a measure of how
well a model predicts through the test phase, and AB
is the general bias of the model. In this paper, we use

the AE measure for next-step predictability. For 14
different software projects, the next-step AE of pre-
dictive filter is computed and compared with those of
other well-known neural networks and SRGMs sim-
ulated by Karunanithi, Whitley, and Malaiya [8] and
Park, Lee, and Park [15].

4.1 Case A : Failure Count Data

Generally, we assume that the data set size is
sufficiently large when its size is larger than 30
(referred to statistical field). Data set size, #, of Datal,
Data3-6, and Datal0 are not large enough for the neural
network experiments. Furthermore the observation time
intervals #;—¢#;_; of Datad and Datab are not constant.
Therefore, the predictive accuracy of the predictive filter
evaluated for these data sets is expected to be low.
Nevertheless, we also performed experiments for these
data sets for the sake of reference.

Let ! denote the training data set size. And 7 is the
prediction distance. For example, » =1 for the next-
step prediction and »= (#— /) for the end-point pre-
diction. For given number of delays d, the next-step
prediction experiments proceed as follows :

Step (1) Set /=d.

Step (2) Train each neural network model by using the
LMS (Least Mean Square error) algorithm and
the training data set m,, my, -+, m,.

Step (3) For each trained network, predict ; step a-
head cumulative number of failures m ,; ; for

i=1,2,-+,» and then compute corresponding

relative prediction errors,
€= (m,+j~m,+,-)/m;+, - 100.

Step (4) Increase ! by 1 and repeat Steps (2) and (3)
until I=n—r.

Step (5) Compute the average of e,; over /.

The average of e;; over / is denoted by e.; and

referred to as the AE. Karunanithi, Whitley and Malaiya

[7, 8] considered the averages of e;, and e;(,_, over

{ as the predictability measures, which correspond to
the next-step and end-point prediction errors, respec-
tively. Since the predictive filter primarily aims the
next-step prediction, we will use e.;. For SRGMs
M ,4; is the estimate of the expected number of failures
up to #,4; obtained from m;, j=1,2,--,7. Then ¢,
and e ., for SRGMs can be similarly obtained.

The most critical problem in implementing the pre-
dictive filter is to determine the appropriate value of d.
To find a suitable value of &, we follow a trial-and-
error approach. That is, Steps (1)-(5) are performed for

d=0, 1, and the resulting e.,'s are plotted
against 4. An appropriate value of 4 is selected by
examining the plot. For example, (Fig. 3) shows the plot
of e., againstd for Data7.

o

12.00

10.00

0 10 20 3o 40 50 60 70 80 90 100

(Fig. 3) Piot of e ., against & for Data?

Examining (Fig. 3), we find that e., achieves its
minimum when & > 70. However, it is apparent that
overfitting occurs when & is too large. We thus con-
sider the cases where d is small. e.;'s for d=1,8,
1118, -+ are practically comparable to each other.
Since a simpler model is usually desirable, we select
1 as an appropriate value of . (Fig. 4) shows m; and

m; for d=1. <Table 2> shows selected values of
d for the 10 failure count data sets. Using the values

of d in <Table 2>, Steps (1)-(5) were performed for
each data set.

The resulting e ., 's were presented and compared

OI=EEHE 0|88 2T EJM M21A Gz 2081

with those of Karunanithi, Whitley and Malaiya [8] in
<Table 3>, The numbers in parentheses are the
corresponding ranks.

m,, m
&0

|0

100

0 N 2 » 4 H 606 D O D W
(Fig. 4) Plot of m; and #, for Datal (d=1)

(Table 2> Selected values of & for 10 failure count data
sets

Data|Data| Data | Data | Data| Data| Data | Data | Data | Data

Data Set /"™ 3"y 5 |6 | 71819 1014
Number of
ki BERE R EARE FE BN RN ENE

Experiment results for the failure count data suggest
the followings :

(1) The predictive filter performs well when the data
set is large. (Data7-9) That is, the predictive filter
is efficient for software reliability prediction
especially when the data set size is large ,

(2) When the data set size is small, all models seem
to have almost similar next-step prediction ac-
curacy. The neural network models and SRGMs

2082 st=g<Mel=zl =X M7 ®75=2000.7)

are either too pessimistic or too optimistic. There-
fore, there is no model that works best for all
software projects when the data set is small.

(3) The number of hidden units in the neural network
models simulated by Karunanithi, Whitley and
Malaiya [8] varied from 0 to 4 depending on the
size of the training data set and the nature of the
data set. But in the predictive filter, the number
of delays is 1 for 7 data sets out of 10 data sets
and does not exceed 4. That is, one or two delays
is enough for good predictability ;

(4) Most of the SRGMs have only 2 or 3 parameters.
The number of parameters in the predictive filter
is d+1. Since 1< d<4 for the 10 data sets, the
number of parameters for good prediction is
almost the same with those for SRGMs,

{Table 3) e., for 10 Failure Count Data Sets

Next-step Average Prediction Error (Rank)
Model Data | Data | Data | Data | Data | Data | Data | Data | Data | Data
L3l 4]5]6]l 71819104
zim 1056] 627 | 848 | 447 950 | 35
@lan| o |G| o | &
FFN- 937 { 844 | 528 | 10.00] 433 | 366 | 6 590 | 456
Generalization] @) | @ | @ | ® i@ | wI®|[@| ® | ®

Neural | FFN- 5611 684
Networks | Prediction 21 6
JordanNet- 679 | 684
G ization| (4) | &)

6951 451 [374 | 524 | 672 | 745 | 480
Wi® W m|a|v| G
525|297 [911 972 408 | 48

0| 6 | 0] B | @

JordanNet- .6.03 611 867 | 524 | 290 | 373 | 641

Prediction Q| ® olw|lale

N EIEE 288 | 447 | 1020

Logarithmic | o) @ | 3 I

Tnverse 921 617] 7% 29| 445 | 9

roynomial @ @ |w|o|lwie|e|w
Statiscal [| 667|786 {60 | 615] 351 | 250 | am | 1305 328 | 350
SRGMs gle|lelole|lolwlw|le|w
o 1115[635 | 040 | 7236 351 | 319 | 706 | 113] 55 | 3
wlwlwlwm|je|ele|le|le|o
Delayed s.oa.e.zs 1090] 363 | 307 | 330 | 1085 657 | as6
S-shape M ®lole|ololo|le]|e®

42 Case B : Failure Time Data

We now perform prediction experiment for the failure
time data. For given number of delays &, the next-step
prediction experiments proceed as follows :

Step (1) Set /=d.

Step (2) Train each neural network model by using the
LMS algorithm and the training data set

S1, 82, °**, 810

Step (3) For each trained network, predict ; step ahead
cumulative number of failures s, for j=1,

2,--,# and then compute corresponding
relative prediction errors,

€r;= (§[+,-"51+;')/S1+, < 100.

Step (4) Increase / by 1 and repeat Steps (2) and (3)
until I=n—7r.

Step (5) Compute the average of ¢;; over [.

As discussed in the previous subsection, we use e .;
as the predictability measure. For SRGMs ., is the
estimate of the (/+,) th failure time obtained from
s;, j=1,2,---,4. Then e;;and e ., for SRGMs can be
also obtained.

A suitable value of d is selected by examining the

plot of e., against & as done in Section 4.1. For

example, e.; for Data? are depicted in (Fig. 5).

14.00
12.00

10.00

0 10 20 30 40 50 BO 70 80 90 100 110 120 130

(Fig. 5) Plot of ‘e .;against 4 for Data?

Apparently d=1 is preferred to other values of d.
(Fig. 6) shows s; and s; for d= 1. <Table 4> shows
selected values of & for the 4 failure time data sets,
each of which is either 1 or 2. Using the values of d
in <Table 4>, the next-step predictions were performed
for each failure time data set.

The resulting e ., 's were presented and compared

with those of Park, Lee and Park [15] in <Table 5>.

n
(<39

0 e
0 10 20 D 4 5 6 70 80 9 100 110 120 130

(Fig. 6) Piot of s; and s; for Data2 (d=1)

(Table 4) Selected values of & for 4 failure time data

sets
Data Set DataZ | Datall | Datal2 | Datal3
Number of Delays 1 2 2 1

(Table 5) e., for 4 Failure Time Data Sets

Next-step Average Prediction
Model Error (Rank)
Data2 | Datall 12| Datal3
Predictive 194
Filter 3
Neural | FFN 228 | 332 | 228 | 158
Networks | ~Generalization| (2) (2) (2 (2)
FFN 2.58 332 2.38
~Prediction (3 (2 (3

Experiment results for the failure time data suggest
the followings :

(1) Predictive filter is consistently ranked in the top
one ranks except for Datal3. This observation

CIZEEE 0188 AZERN H=2|Y 0l 2083

corroborates that predictive filter is better suited
for next-step prediction than other well-known
neural network models.

(2) The number of delays is only one or two. For
good prediction, the number of parameters in
predictive filter is as small as those in SRGMs.
On the contrary, Other neural network models,
simulated by Park, Lee, and Park [15], require
much more parameters since the number of
hidden units is between 10 and 27.

In our experiments, only 4 failure time data set are
used. For the sake of more general conclusion, exper-
iments of more data set will be necessary. However,
experiment results indicate that the predictive filter
works well enough for software reliability prediction
based on the failure time data.

5. Conclusions

As an attempt to develop a universal software re-
liability prediction model, this paper suggests the
predictive filter for time domain failure data. We in-
vestigated its predictive performance by using 14
different software failure data. Based on the next-step
AE, the suggested predictive filter is compared with
other well-known neural network models and statistical
software reliability growth models. Experimental re-
sults show that performance of the predictive filter is
better than other neural network models and statistical
SRGMs for large time domain failure data. (e.g.,
7> 100, except for Datal3) Moreover, for small data
sets, statistical SRGMs and neural network models do
not show any significant difference. We thus come to
the conclusion that the predictive filter is applicable as
a general software reliability prediction model for the
time domain failure data.

However, more data sets need to be gathered and
analyzed for more general conclusions. Especially for
the case where the failure time data set is involved.

The drawback of predictive filter can be apply in
constant time interval data. Therefore, neural network

2084 St=EENZIRE =2X M7H M7=20007)

modeling for variable time interval data be necessary.
Thus, our research in the future will be directed to this

problem.
References

[11 A. A. Abdel-Ghaly, P. Y. Chan and B. Littlewood,
“Evaluation of Competing]Software Reliability
Predictions,” IEEE Trans. Software Eng., Vol.SE-
12, pp.950-967, 1986,

[2] B. M. Anna-Mary, “A Study of the Musa Reliabili-
ty Model,” M.S. dissertation, Univ. Maryland, 1980.

[3] S. Brocklehurst, B. Y. Chan, B. Littlewood and J.
Snell, “Recalibrating Software Reliability Models,”
IEEE Trans. Software Eng., Vol.16, pp.458-470,
1990.

[4] D. S. Clouse, C. L. Giles, B. G. Homne, and G. W.
Cottrell, “Time-Delay Neural Networks : Repre-
sentation and Induction of Finite State Machines,”
IEEE Trans. on Neural Networks, Vol.8, No.5, pp.
1065-1070, 1997.

[5] H. Demuth and M. Beale, “Neural Network Tool-
box User's Guide, Ver. 30,” Math Works, Inc. 1997.

[6] A. L. Goel, “Software Reliability Models : As-
sumptions, Limitations, and Applicability,” IEEE
Trans. on Software Eng., Dec. pp.1411-1423, 1985,

[7) N. Karunanithi, D. Whitley and Y. K. Malaiya,
“Prediction of Software Reliability Using Connec-
tionist Models,” IEEE Trans. Software Eng., Vol.
18, pp.563-574, 1992.

(8] N. Karunanithi, D. Whitley and Y. K. Malaiya,
“Using Neural Networks in Reliahility Prediction,”
I[EEE Software, Vol.18, pp.53-59, 1992.

[9] R. Lippman, “An Introduction to Computing with
Neural Nets,” IEEE Acoustics, Speech and Signal
Processing, pp.4-22, 1987.

[10] Y. K. Malaiya, N. Karunanithi, and P. Verma,
“Predictability Measures for Software Reliability
Models,” [EEE Trans. on Reliability, Vol.41, No.4,
pp.539-546, 1992.

[11] K. Matsumoto, T. Inoue, T. Kikuno, and K. Torii,
“Experimental Evaluation of Software Reliability
Growth Models,” Proc. IEEE Conf. FTCS-18, pp.
148-153, 1988.

[12]]J. D. Musa, A. Lannino, and K. Okumoto, “Software
Reliability : Measurement, Prediction, Applica-
tion,” McGraw-Hill, New York, 1987.

{13] J. D. Musa, “Software Reliability Data,” Technical
Report, Data and Analysis Center for Software,
Rome Air Development Center, Griffins AFB, New
York, 1979.

[14] M. Ohba, “Software Reliability Analysis Models,”
IBM H. Res. Develop., Vol.28, pp.428-443, 1984.

[15] J. Y. Park, S. U. Lee, and J. H. Park, “Neural Net-
work Modeling for Software Reliability Prediction
from Failure Time Data,” Journal of Electrical Eng.
and Information Science, Vol.4, No.4, pp.533-538,
1999.

[16] C. V. Ramamoorthy and F. B. Bastani, “Software
Reliability -Status and Perspectives,” IEEE Trans.
Soft. Eng., SE-8, No4, July, pp.354-371, 1982.

[17] M. L. Shooman, “Probablistic Models for Software
Reliability Prediction,” Statistical Computer Per-
formance Evaluation, New York Academic, pp.485-
502, 1972.

[18] Y. Thoma, K. Tokunaga, S. Nagase, and Y.

Murata, “Structural Approach to the Estimation of

the Number of Residual Software Faults Based on

the Hyper-Geometric Distribution,” IEEE Trans.

on Software Eng., Vol.15, pp.345-355, 1989.

Y. Thoma, H. Yamano, M. Ohba, and R. Jacoby,

“Parameter Estimation of the Hyper-Geometric

Distribution Model for Real Test/Debug Data,”

Dept. Computer Science, Tokyo Inst. Tech., Tech.

REP.901002, 1990.

[20] B. Widrow and S. D. Sterns, “Adaptive Signal
Processing,” Prantice-Hall, New York, 1985,

[19

=

Joong-Yang Park

received his B.S. degree in Applied
Statistics from Yonsei University
in 1982, the M.S. and Ph.D. degrees
in Industrial Engineering from
Korea Advanced Institute of Sci-
ence and Technology in 1984 and 1994.

Since 1985 he has been a professor of the Department
of Statistics, Gyeongsang National University, Chinju,
Korea.

His research interests are in the area of Software
Reliability, Neural Networks, Linear Statistical Models
and Experimental Designs.
e-mail : parkjy@nongae.gsnu.ackr

Sang-Un Lee

received his B.S. degree in Avi-
onics for Hankuk Aviation Uni-
versity in 1987, the M.S. degree in
Computer Science from Gyeong-
sang National University in 1997.
He is currently working toward

the Ph.D. degree in Computer Science at the Gyeongsang
National University, Chinju, Korea.

His research interests are Software Quality Assurance
and Reliability Modeling, Neural Networks.
e-mail : sangun_lee@hanmail net

CI=EHE 0183 LZEQN A2iM 02 2085

Jae-Heung Park

received his B.S. degree in Math-
ematics from Chungbuk National
university in 1978, the M.S. and
Ph.D. degrees in Computer Science
from ChungAng National Univer-
sity in 1980 and 1988.

Since 1983 he has been a professor of the Department
of Computer Science, Gyeongsang National University,
Chinju, Korea.

His research interests are in the area of Software
Reliability, Neural Networks, Automatic Testing Tool,
System Analysis and Design.
e-mail : pih@nongae.gsnuackr

