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The Study on the Upper-bound of Labeling Number
for Chordal and Permutation Graphs

Tae-Eui Jeong' - Keun-Hee Han''

ABSTRACT

Given a graph G=(V, E), La(2, 1)-labeling of G is a function f:V(G)—[0, =) such that, if v1p2€EV are adjacent,
Ru1)-flv)|22d, and, if the distance between v; and v; is two, |lu)-flu)l2d, where dglvy, v2) is the shortest distance
between vy and v; in G. The L(2, 1)-labeling number A(G) is the smallest number m such that G has an L(2,
1)-labeling f with maximum m of fv) for vEV. This problem has been studied by Griggs, Yeh and Sakai for the
various classes of graphs. In this paper, we discuss the upper-bound of A(G) for a chordal graph G and that of A(G’)

for a permutation graph G'.

1. Introduction

The channel assignment problem is the task of
assigning channels (non-negative integers) to radio
transmitters such that interfering transmitters get
channels whose separation is not in a set of dis-
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allowed separations. Hale[3] first formulated this
problem into a graph coloring problem, i.e., the notion
of the T-coloring of a so—called interference graph,
where transmitters are represented by the vertices
and interference by the edges in the graph, colors
assigned to the vertices are channels, and T is the
set of disallowed separations. Subsequently, Roberts[7]
proposed a variation of the channel assignment prob-
lem, where radio channels are efficiently assigned to
transmitters at several locations such that close



transmitters receive different channels, and very
close transmitters receive channels at least two apart.
Griggs and Yeh[2] and Yeh[1l] considered a more
general problem such that, given a real number d>0,
LA2, 1)-labeling of G is an assignment f of non-
negative real numbers to the vertices of G a function
f:WG)—{0, =) such that, if x, yEV are adjacent,
fx)-fy)22d, and, if the distance between x and y
is two, Rx)-fly)l=d.

Griggs and Yeh[2] concentrated on the LA2,
1)-labeling number of G, denoted by A(G, d), which
is the smallest number m such that G has an L«(2,
1)-labeling with no label greater than m with max
{f{v)vEV}=m. They further simplified this problem
as Li(2, 1)-labeling, and showed that for Li(2, 1)
-labeling it suffices to consider labelings with non-
negative integers. Therefore, we consider only Li(2,
1)-labeling with non-negative integers as the labels
in this paper. For simplicity we denote Li(2, 1) by
L2, 1) and A(G, &) by A(G) from now on.

Using the property that every chordal graph G
contains a simplicial vertex, Sakai[9] showed that
MG)S(HG)+3V/4 if G is a chordal graph, where
(@) is the maximum degree of G. Sakai also ques-—
tioned whether this bound is sharp. In this paper, by
adapting our high-only scheme (defined later in this
paper) we show that, if & is chordal, A{(G) < (1/6)
AG)+(19/6) 4(G)+1/24, which is better than Sakai’s
if 4(G)=19. In particular, we show that, if both G
and & are chordal graphs, the upper-bound is dra-
matically reduced to 34(()-2 by using the coloring
of G°. We further extend our scheme to the class of
permutation graphs and prove that A{(G)<44(G)-2
if G is a permutation graph.

2. Preliminaries

Two vertices of a graph G are adjacent if they
are contained in an edge. A path in G is a sequence

of distinct vertices v,, vz, ..., Uk such that v; and vi
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are adjacent for each i, 1<i<k-1. A cycle is a path
- Uk, k23, such that v; and v« are adjacent.
A clique of G is a set of pairwise adjacent vertices.
An undirected graph G is called a chordal graph if
every cycle of length strictly greater than three
contains a chord, which is an edge joining two
nonconsecutive vertices of the cycle[1]. A vertex v
of G=(V, E) is called simplicial if v and its adjacent
vertices induce a complete subgraph of G, ie, a
cliqgue (not necessarily maximal) in G. For any graph
G=(V, E), G*=(V, E) is the graph such that E’={(x,
MIxyEV and dists{x, y)<2 in G}, where we denote
by dists(x, y) the distance of x and y in G.

vy, Uz

Let o be some total ordering of the vertices of a
graph G=(V, E). We will implicitly identify the
vertices with this ordering. For two vertices x and y
we will say that x<y if and only if ¢(x)<o(y) under
o. If two vertices x and y are adjacent and o (x)<
o (y), then we say that y is a higher-neighbour of
x while x is a lower-neighbour of y. H(v) denotes
the highest-neighbour of v in an ordered graph G.
Let G=(V, E) be an ordered graph with V={v;, vz,
., Un}. Then, G: denotes the induced subgraph of G

by the vertices vi, viy, ..., Un.

Nelvl=Ne(v) U{v} denotes the dosed-neighbourhood
of v, where N(v)={ul(y, v)EE) is called apen-neighbour
of v. We denote by x(G) and «(G) the chromatic
mmmber and the size of the maximum clique of G,
respectively. Let G=(V, E) be a graph, then G(S)
denotes the vertices induced subgraph of G by the
set SSV. We denote by dege(v) and diam(G) the
degree of a vertex v and the diameter of G, respec-
tively. G, denotes chordless cycle of length n=>4.

The so—called high-only scheme for L(2, 1)-labeling
of a graph G=(V, E) is the following. First, we order
the vertices of G by some total ordering o. Suppose
that the vertex set V has been ordered as V={v;, v,
ws Unt. For L(2, D-labeling of G we relabel the

vertices in reverse order, i.e., Un, Un-y, ..., Us. Let 1<§
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<j<k<n. Then, when v; is the next vertex to be
relabeled, we need to consider the labels of vk only
for some k since the vertex v; for some i has not
been relabeled yet.

3. (2, 1)-labelings of Chordal Graphs

A chordal graph G=(V, E) admits a special order-
ing on its vertex set V, which is called perfect elim-
ination ordering (peo).

Definition 3.1 A peo of a graph G=(V, E) is an
ordering o ={vy, vz, .., va of V with the property that,
for each i, j, and k, if o()<o(j)<o(k) and (v; vy,
(vi, i) € E, then (v;, ) € E.

Rosel8) proved that a graph G is chordal if and
only if it admits a peo. Note that an end-high path
is a path in G whose end-vertices are higher than
all the internal vertices relative to ¢.

Lemma 32 (Klein [4]) Given a chordal graph G
and a peo ¢, an end-high path has adjacent end-
vertices.

Tarjan and Yannakakis[10] developed an algorithm
called madmum aardinality search (MCS) for compu-
ting peo’s of chordal graphs. The following Lemma
shows that MCS ordering also satisfies very inter-
esting property called P-property. Note that any MCS
ordering is a peo, but not vice versa.

Lemma 3.3 (Tarjan and Yannakakis {10]} MCS or-
dering o={vi, vs, .., vn] of chordal graph G satisfies
the follawing property: (P-property) If o(i)<o(j)<
o(k), and v« is adjacent to v; and not to vj, then
there is a vertex vm, o(m)>o(j), adjacent to v; but
not to vi

Lubiw(6] also showed that doubly lexical ordering
of the neighbourhood matrix of a chordal graph G
satisfies the P-property. A doubly lexical ordering

of a matrix is an ordering of the rows and the
columns of the matrix such that the rows and the
columns are lexically increasing as vectors.

Lemma 3.4 For a chordal graph G=(V, E) with
MCS-ordering o, assume that there are three ver-
tices vi, v, vx € V such that v; is adjacent to both
vi and vx in G, where o(v)<o(v)<o(v). If the
vertex v; have m(=>1) adjacent vertices X=(xi, xz,
., Xm} other than v such that o(x;) <o(xz) <<
o(xm) and vi is not adjacent to any vertex X 1<p
<m, then v is adjacent to xm in Gi

Proof. Since v; and vk are the higher-neighbours of
v, v is adjacent to vk in G by Lemma 32. If ¢ (xm)
> ¢ (v, then clearly vk is adjacent to xm by Lemma
32, If o(xm) <o(v) but vk is not adjacent to Xm,
then, by the P-property from Lemma 3.3, there exists
a vertex, say vy in Gi such that v, is adjacent to
Xm but not to v;i and o (up)> 6 (xm). Note that vi¥us
since vk is adjacent to vi. Then, by Lemma 32, ve
is adjacent to v;; this is a contradiction to the as-
sumption that x» is the highest vertex in X. There-
fore, xm is adjacent to vk in Gi.

Given a graph G=(V, E) with some total order o,
let TWOW)={u€V] ¢ (W)> o (v) and distc(y, v)=2}.

Lemma 35 Let G=(V, E) be a chordal graph such
that V=(vy, v, .., v} has ordered by some M(CS o.
If any vertex vEV has & higher-neighbours in G, 6
2], then |TWOW)| < (AH(G) + 1/2F/6.

Proof. Let u;, w, .., us be the higher-neighbours of
v in G such that ¢ (<o (u) for 1<i< 0-1. Let uy,
U2, .., Up, for some p=0 be the vertices adjacent to
4 but not to v in G for each i. We also assume that
o (ui)< 0 ()<< o (p) for each i. Then, TWO() =
{ujl 1<i< 8 and 1<j<p such that ¢ (> o (v) and
distc{u;,0)=2} such that, by Lemma 34, uy, is adjacent
to Uz us, .., Us, Uz is adjacent to uz, U4, .., us, and
so on. Also, by Lemma 3.2, clearly the subgraph
induced by vU{ul1<i< #} is a clique. Let W={ul u;
is adjacent to at least one vertex in TWO(v), where



1<i<#) and IWI=4. Also, let degalu), 1<i< 6, be
the degree if w/EW; otherwise, 0. Then, |TWOW)] is
as follows: |[TWO(vl= & ‘. degalu)-{1+2+--+(6-1)}
- 9%< 0(4(G)+1/2)-36%2. The function g(6)=6(~
(G)*+1/2)-36%2 has its maximum value at 8 = £(G)/3
+1/6 such that g(8)=6(4(G)/3+1/6)=( J(G)+1/2)/6.

Theorem 3.6 Let G=(V, E) be a chordal graph
Then, A(G)<HGF/6+194(G)/6+1/24.

Proof. Assume that V={v|, vz, .., va} is ordered by
some MCS ordering o. For L(2, 1)-labeling we use
the high-only scheme. Suppose that v, 1<i<n, is the
next vertex to be labeled. To prove the theorem it
is sufficient to show that there exists at most 4(G)’
/6+194(G)/6 + 1/24 numbers used by the vertices
Vi«1, Vie2, .., Dm hence, it must be avoided by v.
Note that, because of the end-high path property of
chordal graphs, we need consider only the higher-
neighbours of vi. Suppose that v; has & higher-
neighbours. Then, by Lemma 35, |TWOw)I<(4
(®)+1/2)%/6. Hence, v must avoid 38 +(A(G)+1/2)/6
S3HG)HHGI /6= GV /6+194(G/6+1/2%4
numbers. Since we can use 0 as a label when we
label v, there exists at least one number for uv:.

L2, 1)-labeling of G and coloring of G are
related as follows: For a given graph G we compute
& first and color the vertices of G by the number
0,2 3 .., 22(G)-2 rather than 1, 2, .., x(G. Then
it is easy to see that the coloring of G’ is the same
as L(2, 1)-labeling of . However, in order to apply
the scheme used in the above, we must know the
size of x(G°) first.

A cycle @q=lv, vs, ..., va] is called chordal cycle if
the induced subgraph of the vertices of @» is
chordal. A graph S, of G is surflower if it consists
of a chordal cycle Qn=[u;, vz ..., Ua] together with a
set of n independent vertices us, uz, ..., un such that
for each i, u; is adjacent to only v;, where j=i-1(mod
n). A sunflower S, of G is called a suspended sun-
flower in G if there exists a vertex » &S, such that
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w is adjacent to at least one pair of vertices u and
W, where j¥k*1(mod n). A 3sun is a sunflower
such that @, is a clique and n=3. Let G be a 3SF
chordal graph if G is chordal and & does not contain
3dsun as its induced subgraph.

Let G be a chordal graph, then G is not necessary
chordal. However, Laskar and Shier characterized
those graphs as follows:

Theorem 3.7 (Laskar and Shier[5]) Let G be a
chordal graph Then, ° is chordal if and only if
every sunflower S., n=4, of G is suspended.

Let G=(V, E) be a graph and C=[uv;, vz .., va be
a simple cycle of G, where n23. An edge (v, v)E
C, 1<i, j<n, is called a dangling edge if there exists
no EC, 1<k<n, such that vx is adjacent to both
vi and v;. We denote by C, the chordless cycle of
length n=4. 1t is clear that chordal graph G contains
no G, n24. The following two Lemmas are well
known and easy to verify.

Lemma 38 [f G is a chordal graph, then there
exist no dangling edges In G.

Lemma 39 [f G=(V, E) is chordal, then every
vertex-induced subgraph of G is chordal

Lemma 3.10 Let G=(V, E) be a chordal graph If
S={v;, vy, .., v} induces a maximal dique in G, then
G(S) is connected and diam(G(S)) <2.

Proof. (i) For the contradiction, suppose that G(S)
is not connected. There exists at least one pair of
vertices x,yES such that (r, y)&E. However, since
x, yES there must exist a vertex, say a&S, such
that (x, a@),(a, y)EE. Since a&S, there must exist at
least one vertex, say zE€S, such that distcla, 2)> 2
while diste(x, z)<2 and distc(y, 2)<2. Hence there
exist two vertices b and ¢ such that (x, b),(5, 2),(y,
olc, 2)EE but (a, b)(a, o)x, 2)y, 2)&E. Suppose
that b¥c, then [x, @, y, ¢, 2, b, x] is a simple cycle
of six vertices and edges (x, @) and (y, @) are dangl-
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ing edges. If b=c, then [x, a, ¥, b, x] is a chordless
cycle of length four. In both case we have contradic-
tions; hence, G(S) is connected.

(it) By part (i), S is connected. For contrary, suppose
that the diameter of G(S) is greater than 2. There
exists at least one pair of vertices x,y&S such that
dists(x, ¥)=3. Let p=[x, a, b, y] be such a shortest
path between x and y in G(S), where ab&S. Since
x, yES there exists at least one vertex, say z&S,
such that z is adjacent ot both x and y in G. Note
that 2 must be adjacent to both @ and b in G for
otherwise G contains Gy or Gs. Now, since z&S, there
must exist at least one vertex, say w, such that
diste{x, y)<2 and distc(y, w)<2 while distg(z, w)=
2. This implies that there exist two vertices ¢ and d
such that (¢, x),(c, w),(d, y).(d wEE but {c, 2)(d
2h{x, w),ly, wWSE. Note that c*d for otherwise G
contains Ci=[x, ¢, w, z x]. Then, it is easy to see
that the edge (x, 2) is a dangling edge of the simple
cycle [x, z, v, d w, ¢, x] in G which is a contradic-
tion to the fact that G is chordal. Therefore, diam(G
(SH<2

Note that the previous Lemma is not true for
general graphs. Let a vertex v of a graph G=(V, E)
be a dominating vertex, DV((), if v is adjacent to
all the vertices of V-{v} in G.

Lemma 3.11 Let G=(V, E) be a graph with dianm(G)
<2 If G contains a cutpoint v, then v is a domina-
ting vertex in G.

Proof. Let Ci, G, .., G, k22, be the connected
components of G-{v}. Suppose that there exists a
vertex x€(; such that (x, v)&E. Then distslx, y)>2
for some vertex y such that y&C, i¥j. Therefore, x
is a dominating vertex in G.

Lemma 3.12 Let G=(V, E) be a 3SF chordal graph
such that diam(G)<2. Then G contains at least one
dominating vertex.

Proof. The proof is by induction on |VI. If |V1<5,
the proof is trivial. Let [V1=6. If G contains a DV(G),

we are done. If not, we must show that ¢ is exactly
a 3sun. Since G is not a clique, there exists at least
two nonadjacent simplicial vertices b and ¢ Also,
there exists a vertex w such that w is adjacent to
both b and ¢ in G. Since not all the rest of the
vertices, say u, v, and a, are adjacent to w without
loss of generality, let (@, w)&E. We have two
cases: .

(i) (@, BYEE. Note that, since (@, b)EE, (a, 0)&KE.
Therefore, there exists a vertex v such that (v,
a)(v, )€E. Then, v must be adjacent to both b
and w. There is a one more vertex u to be added.
However, it is straightforward to see that u can not
be adjacent to both a and ¢, and if u is adjacent to
either b or w, then G is a 3sun.

(if) (@, b)KE. Since distsla, b)=2, there must exist a
vertex, say 4, such that (u, @),(u, )EE. If (g, ¢c)E
E, since u must be adjacent to both ¢ and w, this
case is the same as the case (i). If (g, ¢)&KE, then
either there exists a vertex, say v, such that (v, a),
(v, OEE or (u, ¢)EE. If (v, a),(v, O)EE, it is easy
to see that G is a 3sun. If (u, O)EE, then, because
of the last vertex v, diam((G)=2 in all cases.

For the induction hypothesis suppose that, if |V1<
k, then G contains at least one DV(G), where k27.
Let G be a graph with [VI=k+1. If G is a clique, we
are done. If not G contains at least two nonadjacent
simplicial vertices x and y. Also, there exists at least
one vertex z such that z is adjacent to both x and
y in G Let G’=G-{z}. If z is a cutpoint in G, then,
by Lemma 3.11, x=DV(G). If z is not a cutpoint, then
G' is a 3SF chordal graph such that diam(G')<2.
Hence, by the hypothesis ' contains a DV(G). If
x=DV(G") or y=DV(G’"), then x or y is a dominating
vertex in G If x+DWV(G') and y*+DWG'), then DV( &)
is adjacent to z in G for otherwise G contains a C.
Therefore, G contains at least one DV(G).

Lemma 3.13 Let G he a‘graph such that diam(G) <
2 and G contains no dominating vertex. Let x and y
be any two maximum degree vertices of G. If (x, y)
&E, then G contains either Cs or G



Proof. Let S={vEV] v is adjacent to both x and y
in G). The proof is by induction on ISl. Let |SI=1
and z be the vertex such that z is adjacent to x
and y in G. Since x and y are maximum degree
vertices there must exist at least two vertices u and
v such that (4, x),(v, Y)EE and (2, w)(z, V)KE.
Note that since 1S|=1 (4, y),(v, X)&E and u*v. If
(4, V)EE then the set {4, v, x, ¥, 2} induces a G.
If (u, v)=E, then there must exist another vertex w
such that w is adjacent to both u and y. then the
set {x, ¥, z, u, w} induces a Cy or G5 in G. for the
induction hypothesis assume that if 1SI=k>1 then G
contains either s or G. Let ISI=k+1 and G’=G-{u},
where uES. we need to show that G contains C; or
G If u is a cutpoint in &, then u is a dominating
vertex which is a contradiction. Hence u is not a
cutpoint. Now, suppose that G’ contains a dominating
vertex, say d, then it means that d is not adjacent
to only u in G. Note that u¥*x and u*y. However,
both u and d are adjacent to both x and y in G
Therefore, the set {x, y, d, u} induces a (s in G
Hence, by the hypothesis, G’ contains either Cy or
G and any of this chordless cycle will be remained
in G+{u}. Therefore, G contains either C; or G

Lemma 3.14 If G=(V, E) is a chordal graph with
diam(G) <2, then G(M) induces a clique in G, where
M=(vEV| degalv)=(G)}.

Proof. If (- contains no dominating vertex, then the
proof follows from Lemma 313. If G contains a dom-
inating vertex, then degs(v)=|V|-1 for any vEM.
Hence, the vertices of M induces a clique.

Lemma 3.15 If G=(V, E) is a nontrivial chordal
graph with dian(G) <2, then 4(G)=2\V|/3

Proof. If GG contains a dominating vertex, then clearly
J(G)=VI-122IVI/3 for any |V123. From now on we
assume that G contains no dominating vertex, The
proof is by induction on V1. If |V]1<6, then the proof
is trivial. For the induction hypothesis assume that
if [VI<k, then A(G)=2k/3, k=T. Let |VI=k+l. We
need to show that A(G)=2k/3+2/3. Let M={xEV]
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degeix)=4(G) and G'=G—{x}, where xEM}. Note that
x is not a cutpoint in G for otherwise x is a domina-
ting vertex in G. If G’ contains a dominating vertex,
say d, then clearly dege(d)=k-1. Then, in G, d can
not be adjacent to x for otherwise d is a dominating
vertex in G. Therefore, degs(d)=k-1 which means
that degc(x)>degs(d) for otherwise, by Lemma 3.14,
(x, d)EE. Hence, x is a dominating vertex in G which
is a contradiction. Therefore, by the hypothesis, o
(G')22/3k. We have two cases: (i) IMI=1. Then degs
() 22k/3+1. (i) IMI=2. Then, by Lemma 3.14, M is
a clique. Hence, 4(G’)=4(G)-122k/3.

Corollary 3.16 If G=(V, E) is a chordal graph with
diam(G) <2, then |V| <34(G)/2.

Theorem 3.17 If G=(V, E) is a chordal graph, then
MG+ <w(GF)<3HG)/2
Proof. Let dega(v)= 4(G), where vEV. In &, N z[v)

forms a clique. Hence Z(G)+1<w(G". Suppose that
G contains a maximal clique S={v; vz, ..., ), where
k=34(G)/2+1. By the Lemma 3.9 and 3.10, we know
that G(S) is connected chordal such that diam{G(S))
<2. Therefore, by Corollary 3.16, k<3.4(G)/2. Hence,
wlGH<3HG)/2.

Note that x(G)=w(G) if G is chordal. Therefore,
by the previous observation and Theorem 3.17, the
following theorem is immediate.

Theorem 3.18 Let G=(V, E) be a chordal graph If
G*=(V, E) is also chordal, then A(G)<34(G)-2

We have restricted our discussion to the case when
G and G is chordal. However, since o(G)=x(G)
for any perfect graph the following stronger result
is immediate.

Theorem 3.19 Let G=(V, E) be a chordal graph If
G belongs to any perfect graph, then A(G)<34
(G)-2.
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4. 1(2, 1)-labeling of Permutation Graphs

Let #=[x(1), n(2), .., x(n)] be the permutation of
the numbers 1, 2, ..., n. For example, if 7=[4, 2, 1, 3,
5], then 7(1)=4 and 7(2)=2, etc. Let 7 '(i) denotes
the position in the sequence, where the number { can
be found; in our example 7 '(3)=4. If 7 is a permu-
tation of the numbers 1, 2, .., n.,, then the graph G
[x]=(V, E} is defined as follows: V={1, 2, .., n} and
(i, V)EE if and only if -z () -27())<0. An
undirected graph G is called a permutation graph if
there exists a permutation x such that G=G{r].

Lemma 4.1 Let [vi, v, uJ be a path in a permuta-
tion graph G=(V, E), where i<j<k Then, (v, v EE.
Proof. Since vj is adjacent to both v; and vk, clearly
7' x <z () <z (). Hence, vi is adjacent to Uk
in G.

In a graph G, let path p=[v;, vs .., w] be called
monotonic if v<vz<---<vkx or vice versa, where k=2,

Lemma 4.2 Let G be a permutation graph Then,
every monotonic path induces a clique in G

Proof. The proof follows by applying Lemma 4.1
recursively.

Lemma 4.3 Let a vertex v; has two lower-neighbours
vi and v (Ui<v) in a permutation graph G Let {vj,
U2, .., Ui} be the neighbours of v such that vi<vi<
vp<--<vp and distdv, ve)=2 for all 1<a<p. Similarly,
let {vi, vie, -, Ukg} be the neighbours of vk such
that vi<v<ve<'~<vkg and diste(vi, vw)=2 for all 1<
b=<q. Then,

(i) vj and v are adjacent to dll the higher-neighbours
(f Ui

(ii) vi (resp. v) such that ve<H(vi) (resp. vis<H(v)))
is adjacent to H(v:) for any 1<a<p (resp. 1<b<q);
(iii) If (v, vJEE, then v; is adjacent to all v, 1<
b=g and

() If (v, w&E, then vk is adjacent to all v, 1<
asp.

Proof. (i) Let S={u€V] u is a higher-neighbour of
vi}. Then, the path [v, v, ul is a monotonic path for
any u€S. Hence, by Lemma 4.2, v; is adjacent to
all u€S. Similarly, vk is adjacent to all the higher-
neighbours of v;.

(i) By part (i), clearly {v;, v, H(v)} is a clique in
G hence, 7 NHW)<z (g for all 1<a<p. There-
fore, H(vs) is adjacent to all such v 1<a<p.

(iii) Since (v, VWEE, {vj, v, v} is a clique in G
hence, 7 '(u)<x (w<x (v). Since (v, VL)SE and
(U, VWIEE for all b, 1<b<q, 7 'W)<x <z
() hence, 7 '(vw)<z ') for all such b, 1<b<gq.
Therefore, v; is adjacent to all v, 1<b=<g.

(iv) Since (j, W&E, = )<z ()< (). Since
(v, V&E and (v, VWEE for all @, 1<a<p, )
<7 <z v for all @, 1<a<p; hence, 1 W<
7 ). Therefore, vk is adjacent to all v, 1<a<p.

Lemma 44 Let a vertex v has S={u;, u .., u/
lower-neighbours in a permutation graph G. Let
{Ups, Up, .., Uy} be the vertices adjacent to u, for
some number q for each p, 1<p=<k, and u>v, and
dist(v, uy)=2 for all j, 1<j<p, for each i, 1Si<k
Then, there exists a vertex um, 1<m=<k, such that
um is adjacent to all uy

Proof. The proof is by induction on IS|. If IS}=1, the
proof is trivial. If |S|=2, then the proof is followed
by part (iii) and (iv) of Lemma 4.3. For the induction
hypothesis, assume that it is true for |S|<k-1 for
some k>2. Let [SI=k, and consider the graph G'=G-
{ue). Then, by the hypothesis, there exists a vertex,
say uES-{u} such that u is adjacent to all uy in
G'. In G, it is clear that either u<wux or u->ux and
either (u, wEE or (u, w)SE. Hence, by the part
(iif) and (iv) of Lemma 43, u. is adjacent to all uy
or u is adjacent to all u; in G

Lemma 45. Let G=(V, E) be a permutation graph
with some permutation x. Let v; have two higher-
neighbours v; and v (v<ue), and V,EV be a vertex
with (vj, v)€E and distc(vi, vp)=2. Then, (v, W E
Ein G '



Proof. Since v; is adjacent to both v; and v« and
vi<v<v, clearly r (1), 7 )<z '(v). Note that vi
is the lowest indexed vertex in Gi hence, v,>vi. Now,
since v; is not adjacent to v, we have 7 '(v)<x
(up). Since v; is adjacent to v, 7 V)< '(v,), and
clearly vi>v>v,. Therefore, vk is adjacent to v, in Gi.

Lemma 4.6. Let G=(V, E) be a permutation graph
Then, |TWO(v)| <24(G)-deg(v)-2 for any vertex
vEV.

Proof. Let Nc(w)={v;, vz, .., Uk Ui, Uz, ..., Um} such
that vi<ve<---<wux are higher-neighbours and wu;<we<
--<um are lower-neighbours of v. Note that H(v)=ux.
Let X={xE€V| x>v and dists(v, x)=2 and x is adjacent
to some v, 1<i<k} and Y={yEV] y>v and dists(v,
¥)=2 and y is adjacent to some u;, 1<j<m}. Note
that TWO(v)=XUY. Then, by Lemma 45, v is adja-
cent to all the vertices of X. Also, by Lemma 4.4,
there exists a vertex, say u, such that u is adjacent
to all the vertices of Y. Finally, by Lemma 4.3, each
u, 1<j<m, is adjacent to all v;, 1<i<k Therefore,
[ TWO()|=(dega(vi) - (degalv)-k)-1)+(degcluc)-k-1)=d
egc(v)+degcus)-dega(v)-2<2 () -degs(v)-2.

Theorem 4.7. Let G=(V, E) be a permutation graph
Then, A(G)<44(G)-2.

Proof. We use high-only scheme for L(2, 1)-labeling
of G. Suppose that v;, 1<i<n, is the next vertex to
be labeled. Then, by Lemma 4.6, v; must avoid at
most 3degc(vi)+2 H(G)-dega(v)-2 numbers. Hence, 2
dega(vi)+24(()-2<44(G)-2. Since we can use 0 as
a label when we label v; there exists at least one
number for vi.

5. Conclusions

We claim that (/*+6.4+9)/4-(44°+76 4+1)/24>0 if
4(G)219, the first part of which is Sakai's
upper-bound and the latter part of which is ours. It
can be proved by induction on Z(G). Let A((G)=19,
then it is trivial Assume that (rf+6n+9)/4-(4+76n
+1)/24>0 for all n=20. We need to prove that {(n+
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1)%+6(n+1)+9l/4-{4(n+1)*+76(n+1)+1)/24=2"-36n+15>0.
It can be decomposed into (2n°-40n+53)-(4n-38)>0,
the first part of which is greater than 0 by hypothesis
and the latter part of which is greater than 0 since
n=20. Hence, our upper-bound is better than Sakai’s
if 4(G)=19. For a chordal graph G, if G*=(V, E) is
also chordal, then 4(G)<34(G)-2. If & belongs to
any perfect graph, then A(G)<34(G)-2. For a per-
mutation graph G, A(G)<4A4(G)-2.
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