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The Capacity of Core-Net: Multi-Level 2-Layer
Neural Networks

Jong-Joon Park'

ABSTRACT

One of the unsolved problems in Neural Networks is the interpretation of hidden layers. This paper defines the
Core-Net which has an input(p levels) and an output(q levels) with 2-layers as a basic circuit of neural network. I have

suggested an equation, a, .= p(p—l)—-q(3p'“’—7p+ 2)+ %> —3p+2, which shows the capacity of the Core-Net and
2 2

have proved it by using the mathematical induction. It has been also shown that some of the problems with hidden

layers can be solved by using the Core-Net and using simulation of an example.

1. Introduction

The major purpose of using neural network is a
generalization: to have the outputs of the net ap-
proximate target values given inputs that are not in
the training set. It has been known that there are
three conditions which are typically necessary for a
good generalization. The first condition is that the
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inputs to the network contain sufficient information
pertaining to the target, so that there exists a
mathematical function relating correct outputs to
inputs with the desired degree of accuracy. The
second condition is the smoothness; a small change
in the inputs should, most of times, produce a small
change in the outputs. The third condition is that
the training samples should be sufficiently large and
should be representative subset of the sets of all
cases(population).



In MLPs(MultiLayer Perceptrons) with step/threshold/
Heaviside activation functions, it is needed only two
hidden layers to implement full generality.[1][2] In
MLPs with any of a wide variety of continuous
nonlinear hidden-layer activation functions, one hidden
layer with an arbitrarily large number of units
suffices for the “universal approximation” pro-
perty.[3] But there is no theory yet to tell how
many hidden units are needed to approximate any
given function. A few books and articles suggest
several rules to determine the number of units, but
it is impossible to determine a good neural network
architecture only from the number of inputs and
outputs.[4] It critically depends on the number of
training samples, the amount of noise(the unnec-
essary samples), and the complexity of the func-
tion(classification) to learn. A rule to find out the
number of needed training samples is to use as
many hidden units as the number of weights times
10 in the network. This rule is concerned with only
overfitting and is unreliable too. The only thing that
we can say is that if the number of training sam-
ples is much larger than the number of weights, it
is unlikely to get overfitting, but likely to suffer
from underfitting. Ordinary RBF(Radial-Basis Func-
tion) networks containing only a few hidden units
also produce peculiar, bumpy output functions. Nor-
malized RBF networks are better at approximating
simple smooth surfaces with a small number of hid-
den units.[5][6]

The intelligent way to decide the number of
hidden units depends on using early stopping or
some other form of regularization. Otherwise, simply
try many networks with different numbers of hidden
units, estimate the generalization error for each one,
and choose the network with the minimum estimated
generalization error.

This paper defines the Core-net: 2 layered
multi-level(p levels) input and output(q levels)
neural network. The output node of this Core-Net
may work as a hidden unit in a2 complicated multi
lavered neural networks, since the output node
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has values of multi levels. I will suggest a theo-
rem which is related to the capacity of the Core-
Net and will prove it by mathematical induction. I
will also show a simulation example to prove the

results.

2. Multi-Level 2-Layered Neural Networks

2.1 The Multi-Level Grading Rule (MLGR)

Symbolic values should be converted into nu-
meric values so that a linguistic symbol can be
processed in a neural network system. In order to
have an equal range for each linguistic value, a
MLGR for the conversion of linguistic symbols
had been proposed.[7][8] The kw value of the level
of a symbol which has L levels in total is

represented as

2(k—1)+1 )
2L ’

where L is the number of levels in a linguistic
expression. Therefore, the maximum effective (decision)
range is T1/2L, ie, the length of 1/L. In other
words, the linguistic effective range must be less
than 1/L. Here the effective range means the range
for which a linguistic symbol is in effect, that is,
the range of the symbol’s value as shown in (Fig.
1). The domain of this range is [0,1], because the
input values of the neural network and the output of
the sigmoidal activation function, Equation 1, lie
between 0 and 1.

Level Level Level
[ O 20 T L S A B L O O
0 1 Vg t 2 -u-Dal Vo g2t @ Dgt ]

/2 W (2-1)/2g (2q-3/2q Qg-11/2g

(Fig. 1) Values of each level by grades in gj Levels

Ay is defined as half of the effective range of the
level(linguistic) term y in the kw level and is shown

in (Fig. 2) and (Fig. 3). Here Ama is the maximum

effective range.
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2 = Uy
A1/, A=1/2,
_——>| e <
Yk~ Ay ¥ Yt By
Ve *+ By : Yier - By

(Fig. 3) The maximum effective Range Amax Of @
fevel(linguistic) term yi in the kn Level

22 The Definition of the Core-Net
Definition. (Core-Net):

A Core-Net is a two-layered Neural Networks
consisting of one input, one threshold and one out-
put node. The input and output nodes may have
multi-levels for their values.

The Core-Net is depicted in (Fig. 4) and the
multi-leveling is shown in (Fig. 1) and (Fig. 2).

From the sigmoid activation function, we can re-
write the output as,

7 - 1
1+exp[~—(';w,~,~X,-+ D)
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(Fig. 4) One input and one output multi-level
neural network

When an input X = {x1, x5, x3 . .. %}, |X| = p, an
output Z = {25, 2z 23 . .. 24}, and the size of Z,
[Z| = g, the total number of possible function is 4.
The capacity of the neural network of the above
equation is the number of segments which are
separated by the equations in weight space.

For example, in the case of p=2 and q=7 as shown
in (Fig. 5), the number of segments is 49 which is
o, and the total number of combinatorial function is
also 49. Thus, in this case all the functions are
implementable by only a 2-layer neural network.
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(Fig. 5) The weight space representation of the
weight equations (p=2, q=7)

2.3 The capacity (the number of separable regions) of
the Core-Net
The number of implementable function(the ca-
pacity) is the subset of the possible functions, for
example ¢° in one input with p levels and one
output with q levels.

Theorem (The Capacity of the Core-Net):

Let the capacity(the number of separable regions
in the Core-Net with p input levels and g output
levels; there are p(¢g—1) lines) is a,, for p,gEN,
p21 and g=2. Here, N is the set of natural
number. Then the capacity a, ,, is as follows:

2
8y,0= 5 Kp— 1)~ 23 ~Tp+2)+5*~3p+2.
for p=1 and q=2 4

Proof (by mathematical induction):
1. For =2, a,;=2p (base step).



1) For p=1, that is, it has one line and separates
the space (2-D plane) into two areas. So,
a;,=2; the line goes through the original
position and cuts the plane into two regions.
Therefore the equation a, , holds.

2) Assume a,, holds (hypothesis step).

3) For p+1, the number of new separate regions
by adding one line is 2: the line goes through
the original position. So, a,+1.2 is a,3+2, and
is 2(p+1)=aps .2

So, a,, holds for any pEN (the set of Natural
Number) and p=1.

2. Assume a,, holds for some pEN, p=21, qEN
and g=2 (hypothesis step).

3. Now to prove that a,,q+1=-422(tm—q+5—ﬁ)

—q+1 holds for any pEN, p=1 and for some

g+t1EN and ¢=2, apply the mathematical in-

duction to the equation a,,.+; by the number p.

1) For p=1, there are ¢ parallel lines and it
separates the plane as g+l regions. So,
2y .+1=¢+1, it holds.

2) Assume a,,+; holds; it has p sets of g+l
parallel lines(refer the equation 7 and (Fig. 5))
(hypothesis step).

3) For p+l, by adding one set of g+l parallel
lines, the additional number of separable region
is gl p(g—1)+2). Therefore, Goer.1 i @pg4+1+
gl@p—p+2) and is the same as ape1,¢4;1 Of

the theorem. So, a,,q+1=—q22(ab—q+5—p)—
g+ lholds for any pEN and p=1.

4. Therefore a,, holds for any p, g€N, p=1, and
g=2. =

24 2-layered Muli-Level Neural Network using
MLGR(Multi-Level Grading Rule)

The 2-layer multi-level neural network is com-

posed of an input layer and an output layer without

hidden layer. Each input has p levels and each
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output has q levels. This has been depicted in (Fig. 6),

(Fig. 6) Two-layer multi-level neural network

where wj is the weight value between the node
of Xi and Z;, 6; is the threshold value of output node
Z, Xi € {x,, X2, X3, . . . %}, IXil = p, Z € {2, 2o,
73, .. .2, 17l = q for any 1<i<n and 1<j<m.
Therefore, the output of Z; is

1+ expl —(‘gwﬂ‘xi‘f’ 0,1

When 7| = 2, let Z; = 1/2 then

w,]X1 + W)zX2+ et w,-,-X,-+ st w,,.X,,+ 0,‘=0, (6)
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Let us extend this equation to 1Z| = q, Z =
{1/2q, 3/2q, .., (2k-1)/2q, .. (2q-1)/2q)} and Zy
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= (2k-1)/2q;, where k = 1, 2, .. q, ie, Zx is the
ka level of gi-levels in the jm output by the
MLGR(refer the (Fig. 1)). Let us consider the border
of each level, ie, Zix = k/g in g levels to find out
the weight space separability (the capacity of a
neural network), then

Z,‘k = 1
l+exp[—(;w,-.-X,~+6,~)] ’
= £ 9
q;
6, wy wy Wy ot Wi (X
0.2 Wy Wy vt Wy v Wi X A
é:‘ T “2;1 “}ﬂ w,, “"- X‘ g
ém 14;:-1 “;ne “;-d w‘nu ‘
(10)

where 1<k<g;,—1.

2.5 The Number of Functions in p input levels and q

output levels

Multi-valued function f with domain X = {x;, xz,
x5 ... %), |Xl =p x,—=-2—’2—;7l, 1<i<p, and range
Z =1z, 22, 23 ... 2, 12| =g, z,=—2éL;—L, and

1<j<gq, for some integer p and g, is as follows:

ceerZq},

11)

filxy, 2, %3, .02, " — 21,29, 25,

AX), X, ... X)=2.

Here, X" denotes the n-fold cartesian product of the
set X with itself.

Let the set X is the set of all possible inputs(the
combination of n inputs with p levels for each of
them) as follows:

X= ((X],Xz. ....X,', ,X,.) IX,'G {xl,xg,..., Xjy one ,x,),

where x,-=~2i2i-1-, 1<j<p, 1<i<n} (12)

| X1=p". (13)

The set Z is the set of all possible outputs(the

combination of q levels output for each p" inputs).

Z=(2.2,...2....2)12€2},12| = ¢,
F = (If: X~ 2}, (14)
|Fl=q". (15)

If the system has m outputs, then the function of
n inputs and m outputs is as follows:

T X" - 27,
where X={x;,x3,...,%,}, Z=1{z21,25,..., 2.}
0<xi<ILand0< z <1 (16)
T={3|3: X~ Z"). (17)
The total number of possible function is
Pl =(g")"=q™". (18)

So, the total number of functions by combination of p
levels in n inputs and g levels in m outputs is ¢™'.

A Boolean function is a function f with domain
{F,T) and range {F,T), for some integer n and m as
follows:

f:{F, T} - {F,T}", (19)

where {F,T}" denotes the n-fold cartesian product of
the set {F, 7} with itself. When a problem has n
input variables and m output variables, then there
are |f|=2"" kinds of functions (rules) by their
combination of inputs and outputs. <Table 1> shows

{Table 1> The possible combinatorial functions(rules) for 2 inputs with binary levels of inputs and output

Toputs The Functiors of Outputs Z
No. X Y fi f: fa fa f5 fs f7 fs fo fio | fu | fo | f3 | foa | fis | fi6 |
1 F F F F F F F F F F T T T T T T T T
2 F T F F F F T T T T F F F F T T T T
3 T F F F T T F F T T F F T T F F T T
4 T T F T F T F T F T F T F T F T F T




an example which has two inputs with binary levels
and one output with binary levels, and it has 16(=

2%) kinds of possible functions(rules).

26 The Separability in a d-Dimensional Hyperspace
in General Position
There are C(N, d) homogeneously linearly sepa-
rable dichotomies of N points in general position in
Euclidean d-space, where

N, d)=2 g(N;l). 20

The above equation is proved by mathematical
induction.[6)[11] For all real s and integer k, the
binomial coefficients comprising (N, d) is defined by

(ie) = s— 1)--’~e(!s—le+ D

Therefore the maximum capicity of a multi-layer
neural network with N hidden nodes and d-
dimension of input space is C(N, d). Actually the
capacity of this neural network is far less than C(N,
d). The capacity of a simple binary level perceptron
of an associative network of N nodes has known as
0.138N.[10]

3. The Simulation of an Example

3.1 Model 1(3-1(2)

The model expression "1(3)-1(2)” means that the
Core-Net has one input with 3 levels and 1 output
with 2 levels. In this case, the number of all
possible functions with p=3 and q=2 is 8 (= 2)).
Substitute p and q into the equation (4), then a;,
is 6. There are 6 regions, which are separable with
3 lines derived from the equation (10), as shown in
(Fig. 7). Thus, there are two functions which are
not implementable with this 1(3)-1(2) neural network
out of 8 combinatorial possible functions. The
simulation results are shown on section 3.2.

32 The Simulation Results of model 1(3)-1(2)
The model has been tested with an input and an
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output which have multi-levels with backpropagation
algorithm in neural network. The effective ranges
of all the level values had been set to 10% of the
maximum range Ama the learning rate eta was
0.9; the momentum factor alpha was 0.7; the maxi-
mum iteration number was 32767. The system was
run 10 times with variable random initial weight
value sets in each 8 possible input combinations
(functions). For example, in the case of function
1(F2), ie, output of F, F, T, the training (input,
output) pairs were (0.17, 0.25), (0.50, 0.25), and (0.83,
0.75) and the generated output results were (0.17,
0.128825), (050, 0.363400), and (0.83, 0.687856). The
simulation results of 1(3)-1(2) model are shown in
<Table 2>. The first column of <Table 2> is the
function number. The second one is the test
number with the number of iteration. The third
one is the generated output. The fourth one is the
number of correct outputs out of three data(levels).
The fifth one is the weight value. The sixth one
is the theta(bias). Finally, the seventh one is the
generalized error.

In <Table 2>, the simulation of functions F:
through F; were also run 10 times each, but they
were not converged to the 10% of effective range of
error and reached the maximum iteration. Thus, the
generated outputs, w’s, Theta’s, and Err’s are same
in each run. In the results of functions 3 and 6 (F3,
Fs), the number of correct outputs were only 2 out
of 3 samples in each other. This means that the
two functions are not implementable with this
1(3)-1(2) neural network system and the Errs are
big. Another run of this system with the effective
range of 100% and with the number of maximum
iteration of 1,000,000 shows that only the simulation
of these two functions (F3, Fs) are reached the maxi-
mum iteration number. This confirms that these func-
tions are not implementable with this 1(3)-1(2) model.

If the effective range is set wide, the number of
iteration is small to converge and the weight values
are located near the separate lines (hyper-planes in
multi-dimensional weight space) but inside of them.
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{Table 2> Simulation results of model 1(3)~1(2)

Func. Tter Generated Outputs # of » Theta Err
# ' Sample | _ Sample 2 Sample 3 | Corr. (x 10%)
1.33 0.274809 0.250980 0.228586 3 ~0.368967 -0.908853 0.189628
2.3 0.270739 0.271544 0.272361 3 0.012226 -0.992914 0.962583
35 0.271060 0.250243 0.230620 3 ~0.324220 -0.935206 0183204
4 4 0.268320 0.246312 0225562 3 ~0.345690 -0.945534 0.42889
F 5. 16 0.274873 0.251060 0.228640 3 ~0.368992 -0.908527 0.189869
! 6. 4 0.263372 0.252684 0.242287 3 ~0.167514 -1.000591 0.200872
7. 4 0.258336 0.247265 0.236517 3 -0.175870 ~1.025320 0.208444
8 4 0.264380 0.246421 0.229302 3 -0.283422 -0.976081 0.337266
9. 5 0.271981 0.250269 0.229744 3 ~0.337773 -0.928290 0191172
10. 2 0.274839 0.250989 0.228557 3 -0.369443 -0.908621 0.190123
F2 32767 0128825 0363400  06878% 3 4052664 ~2586068 539767
F3 32767 0.420079 0.418220 0.416362 2 ~0.022917 -0.318629 29,3043
F: 32767 0313221 0.636600 0.870612 3 4037639 -1.458180 539768
5 32767 0.686779 0.363399 0.129388 3 -4.037638 1.458179 5.39768
Fs 32767 0.579921 0.581780 0.583638 2 0.022916 0.318629 29.3043
F 32767 0871175 0636600 0312144 3 -4.062664 2580968 5.39768
1. 4 0.736800 0.744835 0.752708 3 0.125573 1.008467 0.1614
2. 41 0.725385 0.749006 0.771233 3 0.365965 0.910328 0.186578
315 0.725210 0.748873 0.771142 3 0.366507 0.909358 0.187346
4.13 0.725049 0.749032 0.771583 3 0.371475 0.907721 0.19129%
F 5 4 0.729446 0.749474 0.768490 3 0.312019 0.939798 0.360193
8 6. 30 0.725350 0.749005 0.771266 3 0.366511 0.910060 0.18713
7.3 0.725301 0.749007 0.771312 3 0.367267 0.909688 0.187898
820 0.725174 0.749006 0.771423 3 0.369173 0.908734 0.189873
911 0.725151 0.750073 0.773442 3 0.386572 0.905717 0.199091
10. 4 0.733050 0.749251 0.764785 3 0.253442 0.967903 0.286347
When the effective range is set narrow (f.g., 10%), = )
the trained weight values are located near the center "y : Ri
of the regions. (Fig. 7) graphically shows the draw- *e5 1-92 R
ing of the execution results of the first runs in each 4 2 plp 3
. . )
of 8 functions, as shown in the <Table 2>. " -2 Dp Rz
(Fig. 7) shows that there is only one paint in -3 ~UA

each regions except the point of p3 and p6, which
are the outputs of the run those are not converged
and the results are not correct.

8l = -1/6 w
6= -36 @
8; = -56 @

pl=(-0.368967, -0.908853)
p2=(4.052664, -2.586968)
p3=(-0.022917, -0.318629)
p4=(4.037639, -1.458180)
p5=(~4.037638, 1.458179)
p6=(0.022916, 0.318629)

p7=(-4.052664, 2.586968)
p8=(0.125573, 1.008467)

(Fig. 7) 1(3)-1(2), one input with 3 levels
and 1 output with 2 levels

4. Conclusion

This paper suggests a theorem about the equation
to find out the capacity(number of separable regions)
of the Core-Net: two layered multilevel neural
network (refer to the equation 4). The equation has
been applied to an example of model 1(3)-1(2): one
input with 3 levels and 1 output with two levels.
This model has been run with an artificial neural
network using backpropagation algorithm and the
results are shown in <Table 2>.

The number of combinatorial functions in this



model is 8 as described in section 2.3 and in section
3.1. The graph in (Fig. 7) shows that there are 6
separable regions(R1 through R6 in clockwise).
Therefore, there are two functions which are not
implementable. These points p3 and p6, which are
not converged, are located in wrong positions in the
graph and their outputs are incorrect as shown in
<Table 2>. From this output results, the un-
implementable (reached the maximum iteration)
functions are exactly matched to (Fig. 7) as de-
scribed in section 2.3, and to the theorem a, ,.

The weight values of the simulation are located
inside the separable regions as shown in the figure.
On the other hand, the weight points of the two
un-implementable functions are located in the wrong
place and have no meaning.

This Core-Net could be applied to the multi-
layered neural network. The Core-Net is very
helpful to solve an optimized neural network pro-
blems such as optimum nodes, links, and the op-
timum number of training data. The input and output
levels can be interpreted as linguistic symbols for
the process of approximate reasoning too.
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