476 BRFYENIED =F2X] M6 H22(99.2)

ARG $4 24 9 A2209 (checkpointing) &
48 BT A5H B4 TH vima Axd
2 o &
2 ¢

AR A ez k=7 BAS the BAAAde] u3HEE Ase oA A A2AXJPA dE @& AT
7t o)l BT sHed BAZRUEE N2 dE e A7 £ wAA He PAAM AHEHUD $HE

Adagc 28y, AR A 293 BATFoze
D(data shipping)®] o)) WMol HAA] A AlL¥olA ALRENUA W]
27 b @ BARHER A2de dste AMAPPEL AU Z2A2T 5 24

¥ F 9o & =Fdde

B HolAZ B4 FHE o] 4F MAXIY K BF sted AFE FATHHRY

Axde] ZEHY Fol(P4 A Dfunction shipping) Hole A

FAFHole Alxddel 3 HFaA LS

Az H gt

Recoverable Distributed Shared Memory Systems Using
Object-Oriented Dependency Tracking and Checkpointing

Jai-Hoon Kim'

ABSTRACT

Many message logging and checkpointing schemes are proposed for fault tolerance in distributed systems in which
nodes communicate by message passing. Most researches for recoverable distributed shared memory (DSM) also adopt
similar schemes used in message passing systems. However, schemes used in message passing systems are not always
appropriate to be directly used in DSM systems because the two systems, message passing systems and DSM systems,
have different natures (function shipping and data shipping). Many modified schemes have been proposed for DSM
systems to resolve these differences. In this paper, an object oriented approach is proposed for recoverable DSM. We
present a new dependency tracking scheme between pages instead of processes. Based on this scheme, we propose new

checkpointing and recovery schemes that can reduce overhead to make DSM recoverable.

1. Introduction

Message logging and checkpointing schemes are
widely used for fault tolerance in distributed sys-
tems in which nodes communicate via message
passing mechanism. Those schemes used in message

* g A7 E ohlFoieti 1908 E AAg) Yoz AYs%L.
t3 Y Qo adn PR AN FY 9 FHEHFAR wF
x‘-:--'&:ﬁ-r 19989 549 59, 4AHgE 119989 1149 0¥

passing system are also used for recoverable distri-
buted shared memory (DSM). However, two primi-
tives supporting distributed systems have different
approaches. One uses message based on function
shipping and the other uses shared memory based
on data shipping. Message logging and checkpoin-
ting schemes are not efficient to be directly used in
DSM systems. Thus, many modified schemes [11,1213]
have been proposed for recoverable DSM systems to

MUY B FH

resolve the differences.

In message passing systems, dependencies bet-
ween processes arise at each message transfer.
When a process receives each message, the state of
the process depends on the state of the sender of
the message [14]. This dependency tracking mecha-
nism is inefficient for DSM system because messa-
ges do not necessarily cause the receiver to depend
on the sender in DSM systems. A process receiving
a message for actual data transfer depends only on
a process sending the message [12]. Dependencies
can be further reduced by using release consistency
[11] or lazy release consistency [13].

Related Works

Many recoverable DSM schemes have been pres-
ented in the literature. Some of them use stable
storage (disk) to save recovery data [10,11,22,25], and
others use main memory for checkpointing, replicat-
ing shared memory or logging the shared memory
accesses [1,37,15,16,19,2324]). However, only a few
of the papers use an object oriented approach for a
recoverable DSM.

Recoverable schemes for object oriented systems
are proposed [9,18,20]. Object oriented approaches for
recoverable schemes are proposed [6,21]. [6] presents
an object-based recoverable scheme for imple-
menting multiple transaction models. Objects (called
segments) contain data and code. Multiple versions
of an object are allowed to deal with failures. Data
versions (shadows) are created in the implementation
of various transaction models, and manipulated using
the primitive operations of copying the contents of
segment(s). [21] presents an object-oriented approach
in implementing recoverable scheme to hide and
separate the added complexity due to the inclusion
of fault tolerance. Abstraction is used to hide
fault-tolerance layers. Fault tolerance is added to an
application by placing fault tolerance layers around
instances of the data objects. Thus, the fault tol-
erance layers are relatively independent of the ap-

HIELIYE Ol8S 27 JtsT

A R Hi22l AN 477

HL

plication program. [8] presents an event ordering
mechanism in a distributed system based on shared
objects.

In this paper, an object oriented approach is
proposed for recoverable DSM. We present a new
dependency tracking scheme between objects (pages)
instead of procedures (processes). This paper shows
that the object oriented approach for recoverable
DSM systems can reduce overhead. For a recove-
rable DSM system, pages are more important ob-
jects to be recovered rather than processes as we
discussed later. We can consider a page as an ob-
ject thus the object-based approach can be easier to
understand and implement the recoverable DSM than
the conventional approach used in message passing

systems.

2. Page Based Model

This section presents a model for recoverable
DSM using object oriented approach. This model is
based on the dependencies between the states of
pages that result from data dependency between the
pages. We assume that the DSM uses release con-
sistency and dynamic distributed ownership analo-
gous to Munin [5]. When variable X; in page P, is
updated by referencing variable X; in page P, (X; =
f(X;)) between acquire and release, there is data
dependency from page P to page P;, in our defi-
nition. The state of each page is represented by
dependencies between the states of pages, and the
state of the system is represented by a set of page
states. The dependencies between the state of pages
are analogous to those between the states of
processes in [14].

Page State

Data updates in a page is divided into intervals,
called a state interval of the page, by the pro-
pagation of updates at release. Each state interval of
a page is identified by a sequential state interval

478 BRFEBXN2FB =FX M6 H2Z(90.2)

index (or version). When a data dependency exists
between pages P and P; (Assume that Pi depends
on P)), the version of page Pi depends on that of
page P, The state of a page is denoted by its
current set of dependencies on all other pages.
These dependencies are denoted by a dependency
vector as follows :

081, 82, 83, Sw?,

where m is the total number of pages in the
system. The dependency vector is maintained for
each page. §; in page Pi's dependency vector is the
latest version of page P; on which page P; currently
depends, where 1<j<m.

Group Page State

In DSM systems using release consistency
memory model, pages are updated at release
instead of at every update of a page. When multiple
pages are updated, this modification should be
propagated to other nodes atomically. For instance,
when node A updates page Pi and page P;, and
propagates this modification at release, node B
should see all modifications of both pages or
nothing. Because the granularity of the state model
based on page state is too small and the modi-
fication of pages should be propagated to other
nodes atomically, the model based on "page group”
can reduce the complexity of dependency tracking
by reducing the number of dependency and required
memory space.

A page group consists of pages which are
updated together at the same release. The size of a
page group and the member of a page group are
not fixed A page group is created at release and
maintained until it may not be used any more.
"Group dependency vector” is defined as follows :

A =(Ay, Ay Ag e, A

where n is the total number of page group in the

system. A ; in page Pi’s group dependency vector is
the latest version of page Py on which page Px
currently depends, where page Px and page Py can
be any page in page groups P; and P;, respectively.

For example, consider the following application
shown in (Fig. 1) using DSM.

Process A Process B Process C
acquire();
X; = £(X);
Xi = gXi)
release(); .
acquire();
Xk = f(X3);
X; = g(Xo)s
release(); .
acquire();
Xi = f(Xo)
Xi = g(Xa;
release();

(28 1) DSM# o|28t =27y
(Fig. 1) Application using DSM

Assume that variables X; Xj, Xy and X; are in
pages P, P, P, and P, respectively. Let Pi(v)
denote page P: of version v in (Fig. 2). Dashed
lines link pages in the same page group, arrow
dotted lines denote dependency between pages, and
bold dashed lines denote the system states which
will be explained later. Now, we compute the group
dependency vector for page Pi(1). Page Pi(l1) is in
the page group of {Pi(2), P«(1)}). Page Pi(2) does not
depend on other pages except Pi(1), and page Pi(1)
and page Pj(1) are in the same page group. Page
Pi(1) also depends on page Pi(1). Thus, the group
dependency vector for page P«l) is <21,1N>,
where N denotes no dependency.

WGy

C

PO 2 3t
PN N v
ey T
PO ¥‘ I k“l
PO ’I %‘ b

T
1 '

(38 2) Alag] Ay
(Fig. 2) System States

HHNY B =X %

System State

A system state is a set of page states. A system
state is denoted by an mXm dependency matrix.

Ay A A e Am
Ay Ap Az Ay
D=| A3 Ax Am - A

Amy AmZ Ay Arrm

where row i is the group dependency vector for
page P. If two pages Pi and P} are in the same
page group, then row i is equivalent to row j.

Consistent System State

A system state is consistent if an observer can
see the state at some instant during the execution
of the system from its initial state to the current
state, regardless of the relative speeds of the
involved processes {14]. We can apply the definition
of the consistent system state to our page based
system state. If D is some system state, D is
consistent if and only if Vi, j[A ;<A]

In (Fig. 2), bold dashed lines show some exam-
ples of system states in page based models. The
state of a page is observed where the bold dashed
line intersects the line of a page. System state C, is
not consistent because Ag3 and Ay are greater

than A ;. System state Cs is not consistent because
Ay is greater than A . However, system state C;

is consistent.

11NN 3111 3111

11NN 11NN . |[11INN
GlLhyan Cloran Fla 11w

3111 3111 NNNO
Checkpointing

When a page is allocated and initialized, its initial
state is checkpointed. A page can be checkpointed

HIRZEEE 0|8 27 75T

& BR M2l AL 479

AL

by saving on a stable storage [14] or maintaining at
least two copies on two different nodes for each
page [17]. Each checkpoint is maintained until it is
no longer needed for recovery.

The following definition in a page based system
is analogous to the definition in a process based
system [14] :
® The predicate logged(i, o) is true if and only if

the diff (the modification of a page), that started

version o of page P is logged.
® The effective checkpoint for a version a of some
page P is the checkpoint for page Pi with the

largest version & such that &< o
® State interval o of page P; is stable if and only

if Ve, e<a <o llogged(i, @)), where ¢ is the

version of page P recorded in the effective

checkpoint for version a.

A page may be checkpointed at any release. When
multiple pages are updates and propagated, these
pages are checkpointed atomically.

Recoverable System States

A system state is recoverable if and only if all
element page versions are stable as well as the
resulting system state is consistent.

3. Design

Our design is based on release consistency
memory model. We assume that all shared memory
accesses occur in a "transaction” basis. A tran-
saction denotes a sequence of operations -- namely,
acquire, shared memory access, and release.

Page Table Structure

A page table is maintained for each page and has
the following information :

® addr : page address.
® version : version of page (incremented at each

480 SInFPNLITT =2 H6AH H2F(99.2)

update on release).

e vectorm] : dependency vector.

e gvector[m] : group dependency vector.

e twin : used for making diff (difference between old
version and new version of a page [5]).

e ckp[Max_ckp] : checkpoints addresses, where Max
_ckp is the maximum number of checkpoints which
are maintained for each page.

e ckp0 : checkpoint address. It can be used with

diffl) instead of ckpl].

difffMax_ckp-1] : address of diff's which is diffe-

rence from ckp0.

Dependency Tracking

Whenever a modification of a page is propagated
at release, the version for a copy of a page in the
receiving node is increased by one. From the
acquire, the versions of all pages being read are
stored in the table called "version_table[]”. If page P;
of version v; is read, version_table[j] is set to v;.
The first read of the recent version for each page
causes version_table[] to be updated On a release,
vectorlm] of the page table for the updated pages
are set to version_tablef] only for the elements
associated with non-null elements of version_table[].
If vector[] is <I,2N,3> and version_table[] is <N,3,
N,3>, then vector{] becomes <1,3N,3>. gvector{] is
obtained from vector[]'s of the pages in the same
page group.

Checkpointing

We can checkpoint a page by saving the content
of the page on a stable storage or maintaining at
least two copies on two different nodes for each
page. For the latter case, ckpf] is used for the poin-
ter of the page content checkpointed. [17] shows
that guranteeing at least two copies for each page
requires small overhead in many applications because
DSM has more than one copy for each page in
many cases (especially in update-based protocol). Thus,

checkpointing overhead will be small. If the size of
diff between the two versions (the last checkpointed
version and current checkpointed version) is small,
then incremental checkpointing by maintaining difff]
is efficient. This is similar to incremental check-
pointing presented in [4]. However, our scheme saves
the modified part of page (diff) on memory of at
least two different nodes while [4] saves whole the
content of modified pages on a stable storage.

4, Perfoomance Comparisons

A page based algorithm has advantages over a
process based algorithm. We can reduce checkpoint
overheads as well as the number of checkpoints by
reducing dependency.

Reduce Checkpoint Overhead

In process based message passing systems,
saving process states on a stable storage is the
main issues on checkpointing. In addition to process
state, shared memory is also needed to be included
in the checkpointing for recoverable DSM systems.
Each page of the shared memory is saved on a
stable storage by the process which has an owner-
ship of the page, or the backup copy for each page
is maintained.

When a server is waiting for a request, the major
part of a process local state (the stack and control
registers) have the same values and so their con-
tents can be easily rebuilt by re-executing the initi-
alization part [2]. In page based DSM systems, each
process can be considered as a computational server
which computes its own part of shared memory in a
loop. When a process is at the start of the loop, the
process local state has the same values (registers
and stack) or can be restored (local variables). Thus,
their contents can be easily rebuilt by one time
checkpointing at the first iteration or re-executing
the initial routine. As long as the shared memory
space is saved, in page based systems, processes

MUY BE TN X

can restart by re-initializing a process local state
(registers, stack, and local variables) with the saved
shared memory.

By observing typical applications, periodical check-
pointing for process local state is not necessary if
shared memory is saved.

/I A typical application //
main() /I executed by master node
{
initiatize();
init_shm();
fork_thread(compute):
/| fork remote thread to execute compute()
compute(); /I compute
}
compute()
{
while (more jobs) { // repeat until FINISH
if (first iteration) // if first iteration,
checkpoint(; // take a checkpoint for process

// application initialize
// shared memory initialize

/l execute by remote thread

local state
read_shm(); // read shared memory
cakculation(): // calculation
write_shm() /| write shared memory
synch(} /! synchronization (e.g., banier,
lock-undock)

As shown in the above typical application, a
process can restart after failure with (1) the shared
memory saved by checkpointing in a page based
scheme and (2) process local state saved by check-
pointing, which is necessary at the first iteration
only. There are two typical types of applications.
One uses barrier for synchronization and the other
uses lock/unlock.

The following code sor_compute is the compute()
routine SOR application which uses barrier for
synchronization.

sor_computel)
{

RZZEE 0|83 27 It 24 57 HIZal AILH> 481

while (iteration—) {
for (row=start_row; row <= end_row: row++}
for (col=start_cot; col <= end_col col++)
newmatrow,coll = (matfrow-1,coll + matfrow,col-1]
+ matirow+1,c0ll + matlrow,col+1]) / 4
matl+]] = newmat+,*J;
barrier(s;
}

In SOR application, only one variable, iteration, is
changed in each start of the while loop. Variable
iteration can be easily restored because other pro-
cesses have the same values of iteration by barrier()
synchronization. Thus, a process in a failed node
can restart from the start of the loop once shared
memory is saved.

Qsort (Quick Sort) is an example of application
using lock/unlock. gsort_compute is the compute
routine for Qsort application.

gsort_compute()
{
while {unfinish) {

lock(Que): // mutual exclusion for Que
task! = dequeue(Que);

unlock{Que);

lock(pid):

task2 = sortlbuf, task1);

unlock{pid); /I for update propagation
lock(Que): /I mutual exclusion for Que
enqueue{Que, task?);

unlock(Que):

In Qsort application, no local variable is changed
at the start of the while loop. Thus, a process of
a failed node can restart from the start of the
loop. However, we need a little modification for
dependency tracking. We need to allocate variables

482 StxZEXME@R =EX H6H H2=(992)

taskl and task2 in each node as shared memory
because Que and buf depend on each other via
temporary variables taskl and task2. (Alternatively,
we can modify application to update Que and buf
atomically.)

Reduce Dependency

In process based systems, dependency occurs on
data transfer. Thus, checkpoint is taken at release or
acquire. However, in page based system, data trans-
fer does not necessarily mean occurring depen-
dency. Let’s consider following four cases :

1. No process dependency; no page dependency :
When process A reads and writes page P, it is
updated by itself. Hence, no dependency occurs.

2. Process dependency; no page dependency : When
process A reads and writes page P updated by
process B, dependency occurs in a process based
system. However, in a page based system,
dependency does not occur. Even though process
B rolls back to the previous state of updating
page P;, the page based system state is consistent
because there is no data dependency between the
pages. Process B can restart by initializing
process local state. In most cases, the content of
page P updated by process B will not be lost
because the other copy of page P exists in the
node of process A. If the content of page P
updated by process B is lost, process B (or other
process) will re-execute and updated page P; as
before. Consider the following scenario in Qsort
application. Now, we consider Que only (buf will
be considered in the next case): (1) Process B
updates Que; (2) Process A in other node reads
and updates Que (We assume that Que is con-
tained in a page). There are process dependencies
(process A depends on process B) due to Que.
However, no page dependency exists due to Que
if Que can be contained in one page.

3. No process dependency. page dependency : When
process A reads page P, updated by process A

itself and writes page P; (content of page P
depends on the content of page P.), data depen-
dency occurs between pages P and P, in page
based system only. However, we can ignore this
dependency (1) if a checkpoints is taken in page
group basis (instead of individual page), and page
P and page P; are in the same page group, or (2)
if page P, and page P; are checkpointed together.
For an example, in Qsort application, Que and
buf depend on each other after a process executes
the while loop. However, we can ignore this
dependency if Que and buf are checkpointed
together.

4. Process dependency; page dependency : When pro-
cess A reads page Pi updated by process B and
writes page P; (content of page P; depends on the
content of page Pj), dependency occurs in both a
process based system and a page based system.

Because the number of dependencies is reduced
by avoiding dependencies in case 2, our dependency
tracking scheme based on pages is more efficient
than that based on process as in [11,12,14]). (More
advanced recoverable system state can be found by
using our scheme.)

5. Conclusion

A new dependency tracking scheme between
pages instead of processes has been proposed. Based
on this scheme, we have proposed new checkpoin-
ting and recovery schemes which can reduce
overhead to make DSM recoverable. We have shown
the cases of applications in which our object-based
scheme can reduce checkpointing overhead and/or
the number of dependencies. Qur object oriented
approach for recoverable DSM systems is easier to
understand and implement than other approaches
that have been used in message passing systems.
Futher study is needed to verify the advantages of
our object-based approach for recoverable DSM by
simulation or implementation of our scheme.

BAKIY FE N %

References

(1] M. Banatre, A. Gefflaut, and C. Morin, "Tolera-
ting node failures in cache only memory archi-
tectures,” Tech. Rep. 853, INRIA, 1994.

[2] M. Banatre, P. Heng, G. Muller, N. Peyrouze,
and B. Rochat, "An experience in the design of
a reliable object based system,” in Proc. of the
International Conference on Parallel and Distri-
buted Information Systems, pp.187-190, Jan. 1993.

(3] L. Brown and J. Wu, "Dynamic snooping in a
fault-tolerant distributed shared memory,” in
Proc. of the 14th Intemmational Conference on
Distributed Computing Systems, pp.218-226, June
1994.

{4] G. Cabillic, G. Muller, and L Puaut, "The Per-
formance of Consistent Checkpointing in Distri-
buted Shared Memory Systems,” in Proc. of the
14th Symp. on Reliable Distributed Systems, pp.
96-105, Sept. 1995.

[5] JB. Carter, "Efficient Distributed Shared Memory
Based on Multi-Protocol Release Consistency,”
Ph.D. dissertation, Rice University, Sept. 1993.

[6] M. Chelliah and M. Ahamad, "System mecha-
nisms for distributed object-based fault-tolerant
computing,” Fault-Tolerant Parallel and Distri-
buted Systems, pp.234-241, 1995,

[71 T. Fuchi and M. Tokoro, "A mechanism for
recoverable shared virtual memory,” University
of Tokyo (manuscript), 1994

[8] L. Gunaseelan and R. J. LeBlanc, Jr., "Event
Ordering in a Shared Memory Distributed Sys-
tem,” in Proc. of the 13" Int'l Conf. on Distri-
buted Computing Systems, pp.256-263, May. 1993,

[9]1 B. Irlenbusch and J. Kaiser, “Towards a Resil-
ient Shared Memory Concept for Distributed
Persistent Object Systems,” in Proc. of the gt
Hawaii Int'l Conf. on System Sciences, pp.675-
684, Jan. 1995.

[10] G. Janakiraman and Y. Tamir, "Coordinated check-
pointing-rollback error recovery for distributed
shared memory multicomputer,” Proc. of the 13*

2
]
H:‘
fo
om
o
o
]
ot
H

T 7tstt 24 3% N2 AL 483

Hr

Symposium ori Reliable Distributed Systems,
pp.42-51, Oct. 1994.

[11] B. Janssens and W.K. Fuchs, "Relaxing con-
sistency in recoverable distributed shared me-
mory,” in Proc. of the 23" International Sympo-
sium on Fault-Tolerant Computing, pp.155-163,
June 1993

[12] B. Janssens and W.K. Fuchs, "Reducing inter-
processor dependence in recoverable distributed
shared memory,” in Proc. of the 13" Symposium
on Reliable Distributed Systems, pp.34-41, Oct.,
1994.

[13] B. Janssens and W.K. Fuchs, "Ensuring Correct
Rollback Recovery in Distributed Shared Memory
Systems,” Joumal of Parallel and Distributed
Computing, Vol.29, pp.211-218, Sept. 1995.

[14] D. Johnson and W. Zwaenepoel, "Recovery in
distributed systems using optimistic message
logging and checkpointing,” Jourmnal of Algori-
thms, Vol.11, pp.462-491, 1990.

[15]) S. Kanthadai and J. L. Welch, "Implementation of
recoverable distributed shared memory by log-
ging writes,” in Proc. of the 16" International
Conference on Distributed Computing Systems,
May 1996.

{16] A-M. Kermarrec, G. Cabillic, A Gefflaut, C.
Morin, and L Puaut, "A recoverable distributed
shared memory integrating ooherence and reco-
verability,” in Proc. of the 25" International
Symposium on Fault-Tolerant Computing, pp.289
-298, June 1995.

[177 J-H. Kim and N. H Vaidya, “Single fault-
tolerant distributed shared memory using com-
petitive update,” Microprocessors and Microsys-
tems, Vol.21, pp.183-196, Dec. 1997.

[18] L. Lin and M. Ahamad, "Checkpointing and roll-
back-recovery in distributed object based sys-
tems,” in Proc. 20" Int. Symp. on Fault-Tolerant
Computing, pp.97-104, 1990.

[19] N. Neves, M. Castro, and P. Guedes, "A check-
point protocol for an entry consistent shared
memory system,” in Proc. of the 13" Annual ACM

484 B IFLXN LTS = 2K HE6H H2Z(992)

Symposium on Principles of Distributed Com-
puting, pp.121-129, Aug. 1994.

[20] P. Sousa et al, "Orthogonal persistence in a he-
terogeneous distributed object-oriented environ-
ment,” tech. rep., IST-INESC, Lisboa, Portugal.

[21] R Acree et al, "An object-oriented approach for
implementing algorithm-based fault tolerance,” in
Proc. of the International Phoenix Conference on
Computers and Communications, pp.210-216, 1993.

[22] G. Richard and M. Singhal, "Using logging and
asynchronous checkpointing to implement reco-
verable distributed shared memory,” in Proc. of
the 12° Symposium on Reliable Distributed Sys-
tems, pp.58-67, Oct. 1993.

(23] M. Stumm and S. Zhou, "Fault tolerant distributed
shared memory algorithms,” in Proc. of the
Intemational Conference on Parallel and Distribu-
ted Processing, pp.719-724, Dec. 1990.

[24] O. Theel and B. Fleisch, "Design and analysis of
highly available and scalable coherence protocols
for distributed shared memory systems using

stochastic modeling,” in Proc. of the International
Conference on Parallel Processing, Voll, pp.126-
130, Aug. 19%.

[25] K-L. Wu and W.K. Fuchs, "Recoverable distri-
buted shared virtual memory : Memory coherence
and storage structures,” in Proc. of the 19th
International Symposium on Fault-Tolerant Com-
puting, pp.520-527, June 1989.

U n &

e-mail : jaikim@madang .ajot.ac.kr

19849 A > Alo| A5 83t
(8H4h

19934 Indiana University, Co-
mputer Science(A}

1997'd Texas A&M University,
Computer Science(3 3Hd}
AH

1998 ~d A4 o5ttty X f AFEHTHY 2aF

FHEL: FAA 2R, HAIDAI2H

