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Two-Level Scheduling for Soft Real-Time Systems
Jai-Hoon Kim'

ABSTRACT

This paper presents an algorithm for scheduling jobs in soft real-time systems. To simplify the scheduling for soft
real-time systems, we introduce two-level deadline scheme. Each job in the system has two deadlines, which we call
first-level and second-level deadlines, respectively. The first-level deadline is the same as the deadline in traditional
real-time systems. The second-level deadline is later than the first-level deadline, and defines the latest point in time
when the result is still acceptable. Partial-credit is given for jobs meeting the second-level deadline but missing the
first-level deadline, whereas jobs meeting the latter are given full credit. We heuristically compute pricrities of jobs in a
dynamic way by combining the first-level and second-level deadlines with the partial-credit. Simulation results indicate
that our two-level scheduling algorithm is a viable approach for dealing with both soft real-time systems and temporary
overloaded hard real-time systems.

1. introduction

In hard real-time systems, it is essential to meet
deadlines. If a deadline is missed in a hard real-time
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system, the result is useless or may even cause
disastrous consequences. For example, embedded
systems and recovery procedures for highly available
systems are in this category. On the other hand, in
soft real-time systems (e.g., on-line transaction sys-
tems, telephone switches, stock price quotations, mul-
timedia, etc.), meeting deadlines is desirable. How-
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ever, results generated after the deadline may still
be useful. The usefulness of each soft real-time job
missing the deadline is a function of tardiness, which
depends on a characteristic of the job.

This paper presents an algorithm for scheduling
jobs in soft real-time systems. To simplify the
scheduling for soft real-time systems, we introduce
a "two-level deadline” scheme. Each job in the sys-
tem has two deadlines, which we call first-level and
second-level deadlines, respectively. The first-level
deadline is the same as the deadline in traditional
real-time systems. The second-level deadline is later
than the first-level deadline, and defines the latest
point in time when the result is still acceptable. The
difference between the first-level and second-level
deadlines is therefore equal to the maximum ac-
ceptable tardiness. Partial-credit is given for jobs
meeting the second-level deadline but missing the
first-level deadline, whereas jobs meeting the latter
are given full credit.

We describe an adaptive scheduling algorithm to
schedule jobs with first-level and second-level
deadlines so as to maximize the total credit (or mi-
nimize the total penalty). The algorithm is based on
EDF (Earliest-Deadline-First). We heuristically com-
pute priorities of jobs in a dynamic way by combin-
ing the first-level and second-level deadlines and
the partial-credit. As an extension, an adaptive sched-
uling algorithm also considers weight and expected
execution time of each job to maximize the benefit.
Simulation results indicate that our two-level sched-
uling algorithm is a viable approach for dealing with
both soft real-time systems and temporary overload
in hard real-time systems.

2. Related Work
The majority of real-time systems, even many

real-time systems have been thought as hard real-
time systems, categorized as soft real-time systems

[4]. Many researches deal with soft real-time sys-
tems. Lee et al. [5] propose a scheduling algorithm
for soft aperiodic tasks. Their objective is to sched-
ule all periodic tasks and to obtain fast response
time for aperiodic tasks. They use hybrid scheduling
method combining fixed priority strategy for aperi-
odic tasks and deadlinewise preassignment for peri-
odic tasks. Ripoll et al. [10] propose an optimal
scheduling algorithm for soft aperiodic tasks. They
transform a soft aperiodic task into a hard task by
assigning a deadline. After the transform, aperiodic
tasks are handled as hard periodic tasks. This
algorithm is an optimal for periodic task set in
terms of schedulability and provides the shortest
response time for aperiodic tasks. Nagy and Bestavros
[9] propose an admission control scheme and over-
load management technique for soft-deadline trans-
actions. Their transaction model consists of two parts :
a primary task and a compensating task. A trans-
action is considered to be finished by executing one
of followings : the primary task is completed (suc-
cessfully committed) with positive profit, or the
compensating task is completed (safely terminated)
with no profit. Only committed transactions are
benefit to the system. Their objective is to maximize
the benefit of primary tasks that finish by their
deadlines. Buttazzo et al. [2] compare the perfor-
mance of scheduling algorithms which use different
priority and different guarantee mechanisms for an
overloaded real-time systems. Imprecise computation
[1] reduces the execution time of jobs by skipping
an optional part of the job to avoid missing their
deadlines if the result is acceptable. In our two-level
deadline scheme, a deadline is extended, instead of
reducing computation time if the tardiness is ac-
ceptable.

3. Adaptive Scheduling Algorithm

3.1 Basic Scheme
To characterize the soft real-time jobs, the fol-
lowing parameters are given for each job where N



is the number of preemptable jobs : J{0 < i< 1),

® p : priority value.

® ¢ : execution time.

® dj; : the first-level deadline.

® dy (dy; = d);) : the second-level deadline.

® ¢ (0<c;<1):given credit in meeting the
second-level deadline after missing the first-level
deadline.

Our adaptive scheduling algorithm is based on EDF

(Earliest-Deadline-First), and schedules jobs with

arbitrary release times and deadlines.

In addition to the deadline in the traditional sense
(the first-level deadline), the second-level deadline
and credit are also important factors in computing
priorities in our two-level deadline scheme. We need
to combine the two deadlines (the first-and the
second-level deadlines), credit, and weights. We
heuristically compute priorities at every time unit.
(Note that in the following a job with a higher
priority value has a lower priority. Deadlines are
relative to current time.) :

® before the first-level deadline : pi(dy, da, ) = dy
+ (dg - dilci
e after the first-level deadline : m(da, ¢ = dev/ci

The motivation for so computing the priorities of
jobs without weight is :

1. Preemptive EDF scheduling is used as the basis
algorithm.

2. The extension of deadline is considered by using
the second-level deadline (dz) and the credit .
When ci=1, the second-level deadline is the same
as the first-level deadline. (The first-deadline can
be extended to the second-level deadline without
any quality degradation) On the other hand,
when =0, there is no benefit in meeting the
second-level deadline once the first-level deadline
has been missed. (The second-level deadline is
useless.)
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3. After missing the first-level deadline, only the
second-level deadline (dy) and the credit (c;) are
used. Priority value increases (priority decreases)

as ¢ is low.

3.2 Parameter Tuning

For a precise parameter tuning for computing the
priorities of jobs, two weight values (w, and wa)
are considered. Two weight values have following

meanings :

® w;, - this value is used for weighting the ex-
tension of deadlines and partial credits of jobs
before the first-level deadline.

® w,: this value is used for weighting the jobs
after missing the first-level deadline before the

second-level deadline.

We heuristically compute the priority of job with
two weight parameters (wy and wa) as follows :

® before the first-level deadline: pi (di, dzi, ¢) =
dii + weldz - didci.
® after the first-level deadline : i (dz, &) = walde/c).

We tuned the two weight values (wy, and wa) by
comparing the performance by varying one of the
two weight values. Two system parameters are also
used to vary the types of the systems in the
simulation :

® softness factor (S) : This parameter denotes how
long the second-level deadline can be extensible
in maximum. For instance, S=4 denotes that the
second-level deadline can be extended up to
5-1=3 times as long as the minimum slack time
(relative first-level deadline minus maximum
execution time of jobs). The second-level dead-
line is uniformly distributed between the first-
level deadline and the maximum bound of

extension for the second-level deadline.
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e Credit (c): (0 <c¢;<1), credit in meeting the

second-level deadline after missing the first-level -

deadline.

For the performance comparison, we define a per-
formance metric, penalty, as follows :

penalty = ( )"‘='1(1—Cm1,) +Mz)/N.

where M; is the number of jobs missing the
first-level deadline but meeting the second-level
deadline, cm; is the credit (c) of the j-th job
missing the first-level deadline only, M: is the
number of jobs missing the second-level deadline,
and N is the number of total jobs released.

To tune the two weight values, we measure the
performance by varying one weight value. First, we
vary the weight w, and use fixed value for the
other weight (wa) and other parameters : w,=1.0, S5=4,
and c=0.6. The inter arrival time of jobs is Poisson
distribution. (The average inter arrival time depends
on utilization.) Execution times of jobs are uniformly
distributed in interval [515], relative deadline is
uniformly distributed in interval [1520). The ex-
periments run for a total of 1,000,000 CPU time
units. (Fig. 1) shows the performance (penalty). This
figure suggests that the performance is optimal
(suboptimal) when the value wy is not greater than
10. We also measure the performance with other
parameter values (e.g., S=2 and c=0.4). Appropriate
weight values are similar to these.

As the next step, we measure performance by
varying another weight value wa.. We use suboptimal
value w,=1.0 obtained from above simulation. The
(Fig. 2) shows the performance, which suggests that
wa is optimal in near w,=1.0. Simulation results with
other parameter values (eg., s=2 and c=04) are
similar. Thus, we decide the weight parameters as
wp=1.0 and w,=1.0. These values seem to be simple
but might be reasonable values. These values (w»=1.0

and wa=1.0) are used for other simulations in this
paper.
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(Fig. 1) Quality Comparison (variable : wp)
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(Fig. 2) Quality Comparison (variable : ws)

3.3 Performance Comparisons

(Fig. 3), (Fig. 4), and (Fig. 5) show the perfor-
mance comparisons with the tuned weight values,
wp=1.0 and w,=10. In these simulations, execution
time of jobs is uniformly distributed in interval
[5,15], and the first level (relative) deadline (di) is
uniformly distributed in interval [1520). The experi-
ments run for a total of 1,000,000 CPU time units.
In these figures, "c=x" denotes that partial credit is
x for all jobs. (In special, "c=0.0" denotes that the
two-level deadline scheme is not used.) As the
credit ¢ increases the penalty of adaptive scheduling
algorithm decreases just as we expected. However,
there are no gains in an adaptive scheme as ¢
decreases, especially in high utilization. The reason



is that spending CPU time to meet the second-level
deadline for the small partial credit will cause other
jobs to miss the first level deadline (miss the full
credit). Therefore, our adaptive algorithm takes more
advantage as credit (c) increases. Another aspect of
these results is that the difference of penalty
between high and low credits increases as softness
factor (S) increases. (Fig. 5) covers wider range of
penalty than (Fig. 3) and (Fig. 4).
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(Fig. 3) Quality Comparison (S=2)
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(Fig. 4) Quality Comparison (S=4)

ELN rpwery Tawen s |
45 ten10' —4--
40 [Frcans -8
35 b rap g -ve—

‘e=0 4"

8’ 25
%‘ 20 IR
15 b A7
& LDV Sl - 4
10 A x” _ .-8 el
IR - 2 -
s .-o et
0 " 4 1
0 20 40 60 80 100
Utilization

(3% 5) EFu|® (5=8)
(Fig. 5) Quality Comparison (S=8)

LDE HA

2t MLEE 215t S B AHEY Y02IF 4N

34 Precision and Confidence Level

For our simulation, we use 1,000,000 time units,
and the average execution time of job is 10 time
units. Thus, 100,000 jobs are released on the aver-
age in 1009% utilization and 10,000 jobs are released
in 10% utilization. We can expect that the simulation
results are very precise. In this subsection, we pres—
ent the precision and the confidence level of our
simulation results with the following parameters :
the soft factor S=2 and the partial credit ¢=0.6. The
overall point estimation is 6. 100(1- @)% confidence
interval with the degree of freedom f is between 4
~tansa (8) and 8 +teneo(8). We perform this simu-
lation 5 times. Thus, degree of freedom f=R-1=5-1=4,
Table 1 shows estimation, precision (standard error),
and teps 6(8) of penalty of quality for each utilization,

(B 1) 3z 9 U3s
(Table 1> Precision and Confidence Level Utilization

Utiliza- | Estima- | Preci- tons 0(8)
tion(%)| tion sion | 99% | 8% | B% | X% | 8%

10 | 51096007080 | 03257 | 02665 | 0.1968] 0.1508 | 01083
9910 [0.06444 | 02504 | 02041 | 01513 ] 0150 00832
145014 | 006612 | 03041 | 02479 01838 | 0.1408] 01011
188165 | 0.10810 | 04976 | 04056 | 03007 | 0.2304 | 0.1656
29068 | 006166 | 02806 | 02312 | 0amia | 01313 | 0003
67T | 007620 | 03505 | 02857 | 02118 { 0.1623] 0.1165
302278 | 006830 | 03141 ] 02561 | 01898 | 01454 | 0105
33548 [ 004492 | 02066 | 0.1684 | 01248 | 00956 | 00887
366060 | 004177 | 01921 | 01566 | 0.1161 | 00889 | 00639
304654 | 00467 | 02152 | 01754 | 01300 | 0.0996 | 00715 |

SIBI3B|E|&5 8|S

8

4. Extension of Adaptive Scheduling Algorithm

4.1 Adapt to Weighted Jobs

Now, we consider about extension of the previous
basic scheme described in Section 3.1 where we
assumed that all jobs have equal value. However, in
the real world, different job may have different
values. The value of jobs is often overlooked in
real-time systems, many of which simply focus on
deadlines rather than a combination of value and
deadlines [11].
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In this section, we assume that jobs may have
different weights (values). By this assumption, we
heuristically compute priorities for weighted jobs at
every time unit. (Note that in the following a job
with a higher priority value has a lower prionty.
Deadlines are relative to current time.) :

® before the first-level deadline :

B (di, da, & W)= (dii + welda ~ dc)(W +1 - w).
o After the first-level deadiine :

P (i, i, wi) = walda/c)H(W + 1 - wi),
where W is the maximum weight of jobs and wi is
the weight of job Ji

The motivation in computing the priorities of
weighted jobs is to give a job (J)) the priority in
proportional to the weight of job (wi). If job Ji has
a weight wi, then the penalty can be computed as
follows :

MR = (weight sum of jobs missing deadline)/(weight
sum of all jobs)

=21"21 Wm,/2¢=l VV,',

where M is the number of jobs missing the
deadline, N is the number of jobs released, wi is
weight of job J, and wmy is weight of the j-th job
missing the deadline. Finally, if we combine with
the two-level deadline, the miss ratio is computed
as follows :

MR =
(= W (1= C) + 20 fLIW,..z.)/Z W,

where M is the number jobs missing the first level
deadline only, Mz is thé number jobs missing the
both deadlines, wm; is the weight of the j-th job
missing the first-level deadline only, Wmaz is the
weight of the k-th job missing the second-level
deadline, and cm; is the credit of the j-th job miss-
ing the first-level deadline only.

(Fig. 6) shows that the new adaptive scheduling

algorithm for weighted jobs decreases the penalty. In
these experiments, execution times of jobs are uni-
formly distributed in interval [5,15], and the first-
level deadline is uniformly distributed in interval
[1520]. The experiments run for a total of 1,000,000
time units. In this figure, "c=0.0" denotes that two-
level deadline scheme is not used, and "w=x" de-
notes that weight is uniformly distributed between 1
and x. As we expected, the penalty decreases as w
increases by giving higher priority to jobs with
higher weight (i.e., more valuable jobs).

(23 6) EXHD (V1SR X :S=4, ¢=06)
(Fig. 6) Quality Comparison (weighted jobs : S=4, ¢=06)

42 Adapt to Execution Time

In the above section, we do not count the exe-
cution time for computing the priority of job. In
section 3, only the two-level deadline is considered,
and, in the subsection 4.1, two-level deadline and
weight of job are considered in computing the priority.

However, we have to consider the execution time
as well as deadline and weight to reduce the pen-
alty. (In order to simplify the problem, we assume
that the weights of all jobs are identical) As shown
in (Fig. 7), job J1 has the earliest deadline, but has
the longest execution time. On the other hand, job
J2 and job J3 have later deadline, but have shorter
execution times. (Fig. 7) shows an example where
the SJF(Shortest-Job-First) scheduling algorithm has
a lower miss ratio than the EDF (Earliest-Deadline-



First) scheduling algorithm.

From the above motivation, we consider both
deadline and execution time in computing the
priority of jobs. We assumed that the importance
(value) of each job is same in this subsection 4.2.
We consider two ways in assigning the priority of
jobs with deadline and execution time. One way is
weighting execution time on the previous priority (in
Section 3.1) to assign the new priority, and the
other way is weighting between deadline and exe-
cution time.

|
n | ||

Jz|

Cl |

] J2 l:a
¥

J2 misses daadline ]

I
EDF | n

J3 misses deadline

32 [ 13 [ n
¥

J3 misses deadline

(2% 7) tDF™} SF
(Fig. 7) EDF vs. SF

SJF

4.2.1 Weight on Execution Time

We weight the execution time on the previous
priority of job (in Section 3.1). Thus, a job with a
shorter execution time has a higher priority. (Note,
again, that a job with a larger priority value has a
lower priority. Deadlines are relative to current time.) :

® before the first-level deadline :

pi(dy, dai, i, ) = (du + wp (dai - dii) &) &
® after the first-level deadline :

oilda, ¢, &) = wa (dw/ci) e,
where ¢ is the execution time job J.

We measure the performance with the same para-
meters of jobs as the previous simulation. (Fig. 8)
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shows that this scheme can improve performance (a
little though) at the overloaded system.

T T T T T
40 |- 'c=0 0" —o—

38 | 'c=0 8 —+—-
~ 36 |weight -8---

24 b '
1 1 1 1 1 1
60 &5 70 75 80 85 90 95 100
U tilization
(3% 8) EFH|D (S=4, ¢=0.6)
(Fig. 8) Performance Comparison (S=4 and ¢=0.6)

4,2.2 Weight between Deadline and Execu-
tion Time
We also weight between deadline and execution
time to compute the priority of jobs as follows :

pld;, e) =R kil+ (1-R) leil,

where Wil is a normalized deadline, leil is a normal-
ized execution time, and R is another weight para-
meter between 0 and 1 to decide which part is more
weighted (when R=1, only deadline is counted (EDF);
when R=0 only execution time is computed (SJF)) :

® before the first-level deadline :

pildy, da, ¢, e) =R Mi+(ds—didcil+ (1-R) leil.
® after the first-level deadline :

plds, ¢, &) =R Ma/cil+ (1-R) lel

An appropriate compromise between deadlines and
execution times (ie., choosing appropriate value R)
of jobs in computing the priority can reduce the
penalty. However, it is hard to estimate an optimal
value of R (it depends on the job’s parameters).

To study the effect of R, we compare the penalty
by varying the jobs parameters. For performance com-
parison, we assume that a set of consecutive jobs,
called a "burst”, are released at consecutive time clicks,
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and an interval between two bursts (difference in
release time of two jobs, first released job in a
burst and the last released job in the previous
burst) is constant (t). The number of jobs in a
burst is exponentially distributed (average is ns). For
the experiment, we vary two parameters, ts and ns.
(Fig. 9) shows the relative miss ratio. In these ex-
periments, all jobs are assumed to have the same
softness factor, S=2, and the same partial credit,
¢=08. We use ns=9 and t=180 for "typel”; n=4 and
t:=200 for "type2”; ns=4 and ts=100 for "type3”; and
ns=2 and t;=45 for "type4”. Execution time (e) and
relative deadline (D) are uniformly distributed on
(2,10) and (11,18) for "typel”, (5,10) and (11,40) for
“type2”, (3,10) and (11,20) for "type3”, and (1,10) and
(11,15) for "typed”, respectively. The experiments
run for a total of 50,000 CPU time units.

In general, to minimize the average miss ratio,
choosing R near the middle, on (0.5, 0.7), is reason-
able in many cases. This result suggests that EDF
scheduling may not be an appropriate algorithm ex-
cept the case of existing feasible scheduling. The
compromising scheme that gives weight between
deadline and execution time for computing priority of
job can improve performance (redut':e penalty).

1.25

0 0.2 04 0.6 0.8 1
W eight on Deadline (R)

(33 9) Ai™ EEH|W (s=2, ¢=0.8)
(Fig. 9) Relative Quality Comparison (S=2 and ¢=0.8)

5. Conclusion and Future Work
We present an adaptive scheduling algorithm for

soft real-time systems based on a two-level dead-
line scheme. In this scheme, an adaptive scheduling

algorithm tries to meet the first-level deadline for
each job. If it fails, then this algorithm tries to meet
the second-level deadline with some penalty. Simu-
lation results show that this scheme can reduce the
penalty. (We define the penalty for the two-level
deadline scheme). As the first extension, we also con-
sider a scheduling algorithm for weighted jobs, which
gives a higher priority for more valuable jobs. In
the second extension, the execution time of jobs is
considered in computing the job’s priority. Simu-
lation results show that the penalty is decreased fur-
ther with this extended adaptive scheduling algorithm.

To simplify the discussion, we consider two-level
deadlines. More than two levels can be also con-
sidered for the future work.
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