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Two Optimization Techniques for Channel Assignment
in Cellular Radio Network

In-Gil Nam"' - Sang-Ho Park'"

ABSTRACT

In this paper, two optimization algorithms based on artificial neural networks and genetic algorithms are proposed for
cellular radio channel assignment problems. The channel assignment process is characterized as minimization of the
energy function which represents constraints of the channel assignment problems. All three constraints such as the
co-channel constraint, the adjacent channel constraint and the co-site channel constraint are considered. In the neural
networks approach, certain techniques such as the forced assignment and the changing cell order are developed, and in
the genetic algorithms approach, data structure and proper genetic operators are developed to find optimal solutions. As
simulation results, the convergence rates of the two approaches are presented and compared.

1. Introduction

The channel assignment problem is concemed
with finding an admissible frequency band assign-
ment as small number of channels as possible. Vari-
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ous algorithms [1-7] have been proposed to solve
the channel assignment problem. In this paper, two
new optimization algorithms based on Hopfield
neural network [8, 9] and genetic algorithms [10] for
channel assignment in cellular radio networks are
presented. The channel assignment problem is for-
mulated as an energy minimization problem. The
Hopfield neural network algorithm uses the forced
assignment and the changing cell order technique to
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inhibit falling into the local minima which is the
disadvantage of neural networks. To escape the local
minima, if the number of assigned channels are less
than the required channel numbers, one or more
channels are assigned such that the total number of
assigned channels are the same as the required
number of channels in the cell even though energy
is increased ~ the forced assignment. In the pre-
viously proposed neural network approaches, heu-
ristics are used to increase the convergence rate [4],
and some frequencies are predetermined before chan-
nel assignment procedure to accelerate the conver-
gence time (4, 5). In our algorithm, no heuristics are
used and no frequency is fixed before the frequency
assignment procedure. An initialization technique
which uses the constraints of channel assignment
problems and a updating order is developed instead
of heuristics and fixed frequency assignment. Up-
dating order is determined by altemating order such
that the greatest demand cell as the first, the
smallest demand cell as the second, the second
greatest cell as the third, the second smallest cell as
the fourth channel assignment cell, and so on - the
changing cell order technique. In genetic algorithms
approach, the fitness function, the structure of
strings, and the various genetic operators such as
crossover and mutation are developed according to
the constrained conditions in the channel assignment
problems. Three constrained conditions are con-
sidered in this paper as in [11]: co-site constraint
(CSC), co—channel constraint (CCC) and adjacent
channel constraint (ACC).

2. Channel Assignment Problem

A major problem in the mobile communications is
the limitation imposed by the available frequency
spectrum. The cellular concept is one way to over-
come this limitation of spectrum. Frequency reuse is
the essential feature of the cellular concept. Fre-
quency reuse refers to the use of radio channels on
the same carrier frequency to cover different areas

which are separated from one another by sufficient
distances so that there are no interference between
the same channels. The channel interference depends
on the various parameters such as cell shape, cell
size, layout of the cells, applied modulation, etc. We
oonsider three electromagnetic compatability constraints :

(1) co-channel constraints (CCC) : for each pair of
base station it is known whether they may use the
same frequencies or not ;

(2) adjacent channel constraints (ACC):if an
ACC is imposed on a system, frequencies adjacent
in the frequency domain are not admitted in ad-
jacent cells ;

(3) co-site constraints (CSC) : a minimal distance

between frequencies used at the same base station
is prescribed.
Given available frequency channels for the system
as well as required number of channels for each
cell, how should we distribute these frequencies to
each cell such that the above constraints are
satisfied is the task of channel assignment.

Gamst {11] defined the compatibility matrix
C = (cy), which is an MxM symmetric matrix
where M is the number of cells in the mobile
networks, and c¢; is the minimum frequency sepa-
ration between frequencies in the cell C; and C;
The compatability matrix prescribes the mutual
relationship for any pair of frequencies assigned to
different radio channels in the system. Each c;=#%
represents the minimum separation distance between
any two frequencies assigned to cell C; which is

CSC. CCC is represented by c¢;=1, and ACC is
represented by c¢;=2. The number of channels
needed for each cell C, is presented by the number
of required channels (NRC) matrix R = (7))
where 7; is NRC of thecell C;and 1 < i< M.
Let f; indicate the assigned frequency for the kth
cal in the cel C;, where 1< i< M and
1 € k < r;. The condition imposed by the com-
patibility constraints between f3 and f; is given



by |fa—ful=c; where 1< i;< M and
1 < k7 < 7. The channel assignment problem is
to find fi which satisfies the constraint conditions

when the number of cells in the mobile networks
are given along with the compatibility matrix C and
the NRC matrix R.
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(Fig. 1) A Hopfield network for the channel
assignment problem

3. Neural Network Method

An MXN two dimensional discrete Hopfield
network with fully interconnected neurons is
constructed as shown in (Fig. 1), where rows of the
array indicate cell numbers and columns of the
array represent channel numbers. The number of
columns, N, is the lower bound (LB) [12] of the
number of channels for a given cellular com-

munication system. The state of each neuron V
represents an assignment of the channel f, to the
cell C;:if Vyu =
signed to the cell C. In each row, the number of

1, the channel f, can be as-

neurons which have the state value of Vj, = 1
must be equal to 7; since there are 7; requested
calis in the cell C; The connegtion between a
neuron (i,k) and another neuron (j,/) is denoted
by Ty which is obtained from the constraints
measure between the neurons. The external input to
each neuron in the cell C; is indicated by I;.

In order to find admissible channel assignment,
oonstraints of the channel assignment problem should
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be implied in the interconnection weights. Each of
the constraints are invoked by inhibitory and
excitatory support. No more frequency can be
assigned to the cell if the number of assigned
channels (NAC) is greater than or equal to r;. This

constraint can be expressed as
TNC: —3zj|1_3u| (1)

where ¢ is the Kronecker delta function and defined
as follows :

_ (1 if i=j
% = {0 otherwise @)

A}

For the CSC, the assignment of the channel f, to
the cell C; must be inhibited if the channel f; is
already assigned to the same cell, and | fe— fal is
less than ¢, This constraint can be expressed by

T = —¢8; aulcy) 3)

where ay is defined by

1 LRIl < x
oD = {0 otermise @

For the ACC and CCC, the assignment of the
channel £, to the cell C; must be inhibited if the

channel f, is already assigned to the cell C;, and
the distance of two channels | £ — fy| is less
than c¢;. Hence, this constraint can be defined by

T = —1=8;l aulcy). 6)

By combining Egs. (1), (3), and (5), the intercon-
nection weights for channel assignment problem is
given by

Ty =
=851 1=8n| —dgaulci) — | 1-8; | awdcy).
(6

The connection weight Tg; between two nodes Vi
and Vj is symmetrical, i.e, Ty = Tjg, and self-
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feedback is not allowed, ie, Ty = 0.

In order to make NAC equal to NRC, excitatory
support is provided in the form of external input.
When channels are assigned for all neurons except
current updating neuron, the input to updating
neuron is —(7;—1) if assignment is not violated
by constraints. Hence, the external input of all
neurons for the cell C, is given by I, = (»;—1).

The input to each neuron (ik), Sg, is given by

S,‘k = g‘g“TWIV,/'f'I, (7)

If NAC is less than NRC even though the channel
assignment for a cell is not violated to three
constraints, states of network is hardly changed so
that a Hopfield network is stuck at the local mini-
ma. In such case, one or more demanded calls may
not be assigned forever since the assignment is not
violated to the constraints. In order to escape from
local minima, we provide excitatory support to the
neuron in the form of another external input. In our
algorithm, the difference between NRC and NAC is
fed to each neuron in order to change the states of
neurons by violating constraints if NAC is less than
NRC. This excitatory support is given by

I = (r; - gVu)- (8)

With this excitatory support, the probability of
successful assignment can be greatly increased.
Total input to each neuron of our modified Hopfield

network is given by

S,~,, = ggT*yV,’rf'I,"i‘I:k. 9

The output of neuron is determined by thresholding
the input value which is given by

Va = faulkSa). 1,

where

1 fx=2T

0 otherwise an

fud®) = |

and threshold 7 = 0. The schematic diagram of the
neuron (i,k) of our modified Hopfield network is
depicted in (Fig. 2).
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(Fig. 2) Schematic diagram of a neuron (ik)

The channel assignment process is characterized
as the minimization of the energy function which
represents constraints of the channel assignment
problem. For the admissible channel assignment,
channels should be assigned to all demanded calls in
a given system : this is a traffic demand constraint.
In order to assign channels to every calls in the cell
C;, NAC of the cell C; must be the same as NRC
of the cell C; The energy function for the traffic
demand constraint for the cell C; can be defined as

below :
EY = (y,— g‘v,})?. (12)

By CSC, the channel f; must not be assigned to
the cell C; if f; is already assigned in the same
cell and | fu—ful is less than ¢z The energy
function for CSC for the cell C; is defined as

follows :
E¥ = g,l gv,-,,v,.,x,,, (13)
where
1 if k+1
Xw = { and l_(C,‘,'—l) < k< l+(Cu—1)
0 otherwise

(14)



By ACC and CCC, the channel f, must not be
assigned to the cell C; if £; is already assigned in the
cell C;, and distance of two charmels | fu— £ | is
less than ¢y the minimum channel separation
distance between the cell C; and the cell C; for
ACC and CCC. The energy function for the both of
ACC and CCC for the cell C, can be defined as

follows :

Ef = g,] g g VaVi¥ (15)

where
1 if ##jand ¢; > 0

Yib'I:{ and /—(c;—1) < k< I+(c;—1). (16)
0 otherwise

From Egs. (12), (13), and (15), the energy function
for the cell C; is given by

h g] Vi)'t g:, gvﬁvx‘tx.‘u
* gl ;21 g VaViY .

Finally the energy function of the neural network
for the channel assignment problem is given by

E = f‘((r. }f V'+ ﬁ ﬁ,"w"ﬁfw (18)

2 VaVirY it ).

(amn

=1 5=

The channel assignment algorithm based on the
neural network is summarized in the following steps.
1) The initial state of neurons is set to one or zero

according to the initialization method.

2) Repeat the following steps until all neurons are
picked.

a) Pick neuron (ik) according to the updating

method,

b) Calculate the input to this neuron by Eq. (9).

¢) Decide the new state of this neuron by Egq. (10)
3) Compute the energy E of the current assignment.

If £ =0, stop and go to step 4), otherwise repeat
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the process from step 2)

An initialization technique is developed in order
to increase the convergence rate and to decrease
iteration number. We grouped channels with B
blocks. The minimum number of channels (MNC) is
defined as the minimum number of channels needed
to assign channels to all the demanded calls. Note
that MNC is always less than or equal to LB. The
number of channels in a block, W, is defined by

N it LB = MNC
| —LB=Ll _ | it B> MNC
max(7;)—1

The initialization method is summarized as follows :

1) For the cell C; with 7, demands, choose a
block number b at random and choose ran-
domly a channel number p in the chosen
block. Then channel number in the block is
(b—1) x W+ p which does not violate with
CCC and ACC with previously assigned
channels of other cells. Set state of selected
neuron (k) to "1’

2) For the remaining calls of the cell, assign a
‘1’ to a neuron (i,/) which has distance of W
with previously assigned neuron (ik) where
I=(k+ W mod LB.

In the Hopfield networks, the updating neurons
may be selected randomly or sequentially. In our
algorithm, sequential selection is investigated rather
than random selection. The procedure of updating
neuron is surnmarized as follows :

1) Decide updating order of cells by alternating

order.

2) From the first cell to the last cell in the
ordered list, perform cell updating for each cell.

3) If the energy value is zero, stop the iteration
or iteration number is same as the predefined
maximum number of iteration, stop.
otherwise goto step 2).

The cell updating procedure is as follows :

1) Randomly choose one neuron in the current

updating cell for the first update.
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2) Calculate the input by Eq. (9).

3) Decide the new state of the updating neuron
using Eq. (10).

4) Decide the updating direction in the cell such
as left or right of the first updating neuron for
the rest of neurons.

5) Continue updating for the rest of neurons
according to the given direction until all the
neurons in the cell are updated.

4. Genetic Algorithm Method

The genetic algorithm is an iterative procedure
that maintains a set of candidate solutions called
population P(t) for each iteration ¢ A population
consists of a number of possible candidate solutions
called strings. At each iteration a new population
P(t+1) is created from the previous population P(t)
using a set of genetic operators. Conventional
genetic algorithms (GA) use fixed-length binary
strings and two basic genetic operators. In order to
solve problems using GA, a problem is, in general,
transformed into an appropriate form for GA. The
algorithm proposed in this paper has difference in
approaching method such that the representation of
strings is modified instead of the problem itself, and
appropriate genetic operators are designed. A popu-
lation can be represented by two-dimensional array
of size PxQ . The rows of the array represent
strings in a population, and the columns represent
channel numbers. There are P strings in a po-

pulation and each string has number @ = ,gr,-
calls where M is the number of cells in the system
and each cell i has »7; calls. The sting S,

represents the assignment of channels for the
system as potential solution. Each string S,

composed of M cells and each substing S, for the
cell C; has 7; elements which is the number of
requested calls in the cell C, The value in the kth
feature of S,, denoted by S,{(%), represents as-

signed channel number to the kth call in the cell C;.

The channel assignment problem is formulated as
the maximizing a fitness function that is equivalent
to the minimization of objective function. We define
the objective function for each constraint. Since
every feature in a string has been assigned a value,
NAC is always equal to NRC. Hence, the traffic
demand constraint is not considered in genetic
algorithm approach. For CSC, the assigned channel
numbers S ,{(4) in the substring S, should apart

each other with distance at least c¢;. The objective
function concerning with CSC, denoted by ng, for

each substring S, in a string S, is defined by
EE = 2 Va (20)

where V) represents the state of possibie channel
assignment with the CSC and r; is NRC of the cell
C;. If the channel assigned to the kth call in the
cell C; is not violated by CSC, Vj takes value 0

otherwise takes 1 as below :

Va = or | fa—Ffa-nl = cq @n

[0 if | fa—Ffusnl 2 cy
1 otherwise

where V is the channel assigned to the kth call in
cell C; The objective function FE _‘2',: for all cells

(substrings) in a string S, is given by

EE =% 2V, @)

The objective function E§° for ACC and CCC is
defined by

B¢ =52 R v, @)

where i and j are the cell numbers and k and / are
call numbers. Vy; takes value 1 or 0 as below :

0 i [ fa—ful = ¢y
Vi _{1 otherwise ¢ (24



Finally, from Eq. (22) and (23), the objective func—
tion for each string is defined by

By the objective function Eq. (25), the worst as-
signment gets the highest value. Our aim for this
optimization problem is to make strings having
objective function value 0 with smaller iteration
numbers. Hence, channel assignment problem is
formulated as objective function minimization pro-
blem. In order to make the channel assignment
problem as fitness maximization problem, we defined
the fitness function as below :

Fs = —2— (26)
(43

n=1
where P is the number of strings in a population
and

0,= E!s, (2n

Genetic algorithms are composed of two opera-
tions : reproduction and recombination. Reproduction
is a process in which individual strings are selected
according to their fitness function values. Strings
with a higher fitness value have a higher probability
of selection to produce offsprings in the next gener-
ation. After selection of good strings, two strings
are recombined by some genetic operators such as
crossover and mutation, this process is called recom-
bination. The crossover operators proposed in our
genetic algorithm are two-point crossover and it can
be summarized as bellows :

If randomly generated probability of the substring
is greater than the probability of crossover, two
crossover points are randornly generated and features
between two crossover points are swapped each other.

Although reproduction and crossover operations
search solution space effectively, if majority of
strings search near local minima, most of selected
strings are near local minima. In order to provide
diversity in searching points, parts of string are
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modified by mutation operation. In our algorithm,

mutation is applied to each substring with mutation

probability P, Mutation operation developed in this
algorithm is summarized as bellows :

1) For the all assigned channel numbers in the
substring, check whether the assignment is vio—
lated to all constraints or not.

2) If the assignment for substring is violated with
any constraint and randomly generated probability
is greater than P,, mutation operator M1 is ap-
plied to substring and then mutation M2 is also
applied.

(1) Mutation operator M1 :
Assign the randomly selected channel to
the 1st call of the ith substring in cell C;

as f;. For the remaining calls in the same
cell, assign channel number fi,+p+7 to
the pth call in cell C; where 2<p<d; and

LB—1 |
max (»)—1

(2) Mutation operator M2
Move the every assigned channel number f;
for the kth call in the ith substring to the
((k+ @) mod r)th call where @ is the

randomly chosen integer and w<{7.

y =1

5. Simulation Results

A mobile system consisting of 21 or 25 cells is
used in our simulations. The 2l-cell system is
shown in (Fig. 3). Compatibility matrices C and
NRC matrices R of 25-cell system and 21-cell
system are shown in (Fig. 4) and (Fig. 5), respectively.
To investigate the convergence rate and the iteration
number, 100 simulation runs were performed with
different initial seed number for each run. The
convergence rate is the probability of the successful
channel assignment. It is the ratio of the number of
successful assignment to the total tries. The average
iteration number is the average number of iterations
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when iteration is terminated. If channel assignment
is failed, the number of iteration is equal to the
maximum number of iteration, 500 for neural net-
work and 100 for genetic algorithm.

80000
S

(Fig. 3) The 21-cell system : The cell number
is indicated in each cell

N —000000PRRR~0~D0D0~080
PETYY IV Feaet— 1Y TP PR+

e —,— Y e e PR —— G~ —— 0O

—O =D —N-
CO0000C0000=eNOmm—m O ————

(oYY pu

ooo0
——wO0000R00D~ =~ QPN ~ OO

PO, e — @ PROC— OO0 ——

-~ 000000 ee880 N 0~=0—
00COG e N D —Bm————
P SR = Sy = -l
CODOO~ N en0=0GOCC~CETD
00000 — N e ==30000000C00D
LT LR ey T -T-T-7-¥-7-7-7-1-%
D - -2 T =777
OO N O e Cm P BOOOCOOOD
@OmmN—~000-000~008C060500
B L ey N T T T LT
Bl LA L Ed-T-1-2-1-T-1T L4-1-1-X-7-1 ¥ T-1-3
-N——000000C000——— 009 ~000

000000000000 CO0~——=NOC~ee
00000 eS0O0CrmmamNeOm=—-
OO0 000099eOmmr~m NP —a

COOBO00000mmmmOr———O=O =~

(a) (b)
(Fig. 4) (a) Compatability matrix C1. (b) Demand vector D!

To test our neural network approach, 7 bench-
mark problems [4] have been examined. <Table 1>
shows the specification of the problems, which are
also used in [4] and [5]. In <Table 1>, C represents
compatibility matrix, ACC implies the presence of
ACC on adjacent cells. A ‘2’ or 'l" in ACC column
represents the presence and absence of ACC
respectively. CSC is indicated by the value in
column c¢; In the Funabiki's model [4] and Chang's
model [5], there are parameters to be determined for
the energy function. Funabiki used four heuristics to
improve the convergence rate of channel assignment.
For the simulation, they [4, 5] also fixed the channel
assignment for some cells in order to accelerate the
convergence time. In our algorithm, heuristics were
not used since there are no parameters to be deter-
mined for the energy function and the inter-

connection weights. In addition, no channel assign-
ment is fixed before the channel assignment pro—
cedure. In <Table 2>, the simulation results are
compared with the results in [4], and [5].

#CEalYREHECHNINECcnnta

k]
H
1
.
.
1
1
2
1
.
.
.
13
H
1
]
3
.
.
.
.

—
o

~
—
=9
=

[0 EE3 [ LT T VT T TN

(e 69] ® ()

(Fig. 5) Compatability matrices (a) C2. (b) C3, (c) C4, ()
5. (f) €6, (g) C7, and Demand vectors (d) D2, (h) D3

(Table 1> Problem specifications used in experiments
for neural network approach

Problem | 4ol lacc| i | 1B | c | D
1 % 1 2w ]alm
2 21 1 | 5 |31 |c2| D2
3 21 1 | 7 |sw]|c3|pe
4 21 2 | 7 |58 | cal| D2
5 21 1 [ 5 [ 21 [ c2| D3
6 21 1 | 7 |30 ]|c3| o3
7 21 2 | 7 [309 [ca|D3

To test our genetic algorithm approach, 5 pro-
blems have been examined and the resuits are
compared with neural network approach. <Table 3>
shows the specification of the problems. The av-
erage convergence rates and the average iteration
number of neural network approach and genetic
algorithm approach are shown in <Table 4>, From
the result of problem 10 for genetic algorithm, the
average number of generation is zero. It means the
admissible channel assignment is done during the
generation of the initial population. <Table 5>



shows the cpu times measured in second using Sun
Sparcstation 10 for each approach. The parameters
used in genetic algorithm are the number of maxi-
mum generation, the number of strings in a popula-
tion, the probability of crossover, and the probability
of mutation and the typical values used are 100, 200,
0.9, and 0.03, respectively.

(Table 2> Comparison of simulation results

Pro- Funabiki Choi Ours
t}lﬁ’m itera- |conver-| itera- |conver-| itera- | conver-
| tion | gence tion [ gence | tion | gence
1 | 2940 9% 7391100% | 2799 ] 62%
2 | 1478 93% | 6689 |100% | 674 99%
3 11175 100% | 7659 100% | 64.2) 100%
4 11003 | 100% | 7066 | 100% | 12681 98%
5 | 2348 79% | 81.28|100% | 624 97%
6 8.6 | 100% | 6057 | 100% | 127.7] 99%
7 | 3056 24% | 10541 | 100% | 1519 52%

(Table 3> Problem specifications used in experiments
for genetic algorithm approach

Problem | #of | acc | ¢ | 1B | ¢ | D
2 21 1 5 | 73 |c2| DR
3 21 1 7 | 381 | c3| D2
8 21 2 7 | 53 | C5 | D2
9 21 1 5 | 53 | c6 | D2
10 21 1 7 | 221 | c7| D2

(Table 4> Comparison of neural network approach and
genetic algorithm approach

Genetic Algorithm

blem | jtera- |conver-| cpu- itera- | conver-| cpu-
tion | gence | time | tion | gence | time

674 99% | 3138| 2629 | 97% 52.4

Pro- Neural Network

642 100% | 5957 | 546 | 100% 426

2
3
8 1106 98% | 95869 7.35) 100% | 21084
9 298| 100% | 12358 | 0.24 | 100% | 471.7
10 392 | 100% | 2189.3| 0.00| 100% | 342.7
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6. Conclusion

Two optimization schemes, neural networks and
genetic algorithms, are explored to solve channel
assignment problems in cellular mobile communi-
cations. To avoid falling into the local minima area,
the forced assignment technique for the neural
networks and the data structure and proper genetic
operators are developed. The results observed in this
paper show that neural networks and genetic
algorithms can be applied to obtain the optimal
solutions for the channel assignment in mobile
cellular communications. From the simulation results,
the convergence rate of two approach is similar
although the cpu time of genetic algorithm is, in
general, shorter than neural networks. Genetic algo-
rithm, however, needs huge size of memory since
genetic algorithms are a kind of multi~point search
techniques.
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