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An Algorithm Solving the Biconnected-components
Reconstruction Problem

Chang-Suk Lee' - Jung-Ho Park' - Yeon-Seol Koo'

ABSTRACT

This paper considers the Biconnected-components Reconstruction Problem(BRP), that is, the problem to reconstruct
the biconnected-components in response to topology change of the network. This paper proposes a distributed algorithm
that solves the BRP after several processors and links are added and deleted. Its message complexity and its ideal-time
complexity are O(n'+a+b) and O(n') respectively, where n' is the number of processors in the network after the
topology change, a is the number of added links, and b is the total number of links in the biconnected components (of
the network before the topology change) including the deleted links.

LM B

This paper considers distributed algorithms opera-
ting on a network of processors connected by com-
munication links. On such a network, it is important
to compute the biconnected components since the
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biconnected compenents are relevant to reliability of
the network. Several distributed algorithms for com-
puting the biconnected components have been propo-
sed[5, 6, 7, 9]. These previous works consider the
problem for computing the biconnected components
from scratch. In a real network, however, topology
of a network often changes because of addition(e.g.
recoveries) and deletion(e.g. failures) of processors
and links. This makes it important to study distri-
buted algorithms for Reconstruction problems, that is
the problems to reconstruct solutions(e.g. the bicon-



nected components) in response to the topology cha-
nge. Some distributed algorithms for the reconst-
ruction problem have been proposed(8].

This paper considers the Biconnected-components
Reconstruction Problem(BRP), that is, the problem to
reconstruct the biconnected components in response
to topology change. It is obvious that the BRP can
be solved by the known distributed algorithms that
compute the biconnected components from scratch.
However, it is a natural assumption that each proc-
essor knows the old solution, that is, each processor
initially knows the biconnected components of the
old network(ie. the network before the topology
change). The information available at each processor
is not necessarily restricted to the old solution. More
generally, we can assume that each processor has
some auxiliary information about the old network.
This raises a question : How efficiently can the
BRP be solved using such an auxiliary information ?
This is an interesting subject of study.

This paper proposes a distributed algorithm for
the BRP after addition and deletion of several pro-
cessors and links. The solution of the BRP is the
labels assigned to all links : each link is labeled so
that the links with the same label form a bicon-
nected component, and each processor has to know
the label assigned to each of its incident links. Since
the algorithm uses a spanning tree of the old net-
work as auxiliary information, it also reconstructs
the spanning tree in response to the topology chan-
ge. Its message complexity and its ideal time comp-
lexity are O(n" + a + b) and O(n") respectively,
where n' is the number of processors in the new
network(ie. the network after the topology change),
a is the number of added links, and b is the total
number of links in the biconnected components(of
the old network) including the deleted links. Since
the length of every message is O(log n'), its bit
complexity is O((n’ + a + b)log n'). The (total)
space complexity is Olelog n + e’log n’'), where
n(resp. e) is the number of processors(resp. links) in
the old network, and e’ is the number of links in the

new network. Note that we assume topology change

does not occur during the execution of the algorithm -

Swaminathan and Goldman[8] present a distri-
buted algorithm for the BRP in a different environ-
ment. They consider a completely connected network,
that is, each processor can directly communicate
with any other processor by sending and receiving
niessages. They consider a logical structure of the
processors on the completely connected network.
The logical structure changes due to addition and
deletion of logical links between processors, and the
BRP they considered is a problem to maintain the
biconnected components of the logical structure.
Since the network is completely connected, their
algorithm allows the processors to communicate with
any other processors directly regardless of the
topology of the logical structure. This assumption
makes it possible to deal with topology change
during the execution of the algorithm. Its message
complexity and ideal time complexity are respec-
tively O(c + m') and O(m’) for deletion of one link,
and respectively O(c’ + m') and O(m') for addition
of one link, where clresp. ¢') is the number of the
processors in the biconnected component containing
the deleted link(resp. the added link), and m’ is the
number of the biconnected components in the new
network. In the case of addition and deletion of k
links, the message complexity and the ideal time
complexity become k times as large as those for one
link. In their definition, the solution of the BRP is
the sets of processor IDs : each of the sets consists
of the IDs of the processors contained in the same
biconnected component, and each processor computes
the ID sets for all biconnected components contain—
ing it. This requires the high bit complexity and the
high space complexity. '

2. Preliminaries
2.1 Graphs

An (undirected) graph G is a pair (V, E), where
V is a finite set of vertices and E is a set of
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edges(i.e. unordered pairs of distinct vertices in V).
We use standard definitions [3] for a neighbor, a
path, a cycle, a connected graph, a spanning tree,
etc. This paper considers only connected graphs.

A biconnected component is a maximal set of
edges such that any two edges in the set lie on a
common cycle. Notice that each edge is contained in
exactly one biconnected component.

2.2 Distributed system model

A network N is a pair (P, L), where P is a finite
set of processors and L is a set of {communication)
links (i.e. unordered pairs of distinct processors in
P). From the definition, we can consider a network
as a graph, and thus we use graph terminologies
and notations for networks.

Our model is standard one, that is, (Al) through
(A4) are assumed. (See [5, 11] for more details).

(Al) All processors execute the same program.
The program consists of (a) internal operations wit—
hin a processor, (b) send operations to send messa-
ges to its neighbors, and (c) receive operations to
receive messages from its neighbors.

(A2) Every link is a bidirectional link and the
processors can communicate directly with its neigh-
bors by sending and receiving messages along the
links.

(A3) Every link is compietely fault—free and works
as a FIFO queue.

(A4) The network is completely asynchronous,
that is, there is no bound on message delay, clock
drift, or the time necessary to execute a step. Thus,
there is no timing assumption.

2.3 Biconnected-component Reconstruction Problem
(BRP)
A network configuration is a global state of the
entire network. We simply call it a configuration.

We say that the biconnected components of a
network N are already determined in a configuration
¢, if every biconnected component is uniquely labeled
and every processor knows, for each incident link,
the label of the biconnected component containing
the link. Recall that every link is contained in
exactly one biconnected component.

The Biconnected-component Reconstruction Problem
(BRP) is the problem to recompute the biconnected-
components after change of the network topology.
We consider topology change due to addition and
deletion of several processors and links. Throughout
this paper, the network before the topology change
(resp. after the topology change) is called an old
network(resp. a new network) and denoted by N=(P,
L) (resp. N'=(P’, L')).

More precisely, the BRP is the problem to reach
the following final configuration from the following
initial configuration.

® The initial configuration : the biconnected com-
ponents of the old network N are already deter-
mined, and processors incident to the added or
deleted links know which incident links are added or
deleted.

e The final configuration : the biconnected comp-
onents of the new network N’ are already deter-
mined.

In order to solve the BRP efficiently, we can
make use of some auxiliary information. If we use
some auxiliary information, the auxiliary information
must be also updated so as to correspond to the
new network N’. The algorithm proposed in this
paper makes use of a spanning tree of N, and also
recomputes a spanning tree of N'. Notice that links
of the spanning tree of N may be deleted in the
topology change.

Throughout this paper, we use the following no-
tations.



® N=(P, L):the old network(before topology
change).

® B), Bz, -, By ! the biconnected components of
N. m is the number of the biconnected components
in N,

® T :a spanning tree of N available at the initial
configuration. For convenience, we consider a span-
ning tree as a set of links.

@ Ty, Ty =, Tm:Ti = T N B; for each i(1<i<
m). Notice that Ti is a spanning tree of N; =(P, B;)
where P, = {u e P | (uwv) € Bi).

e N = (P, L) : the new network (after topo-
logy change).

e By, By, -, Bn' ! the biconnected components
of N'. m' is the number of the biconnected com-
ponents in N'.

® P.resp. Py :the set of the added proce-
ssors(resp. deleted processors). It holds that P, N
Pi=@and P =P U P, - Py

® J.(resp. L) :the set of the added links(resp.
deleted links). It holds that I, N Ly =@ and L' = L
U L. - La

In this paper, the BRP is considered under the
following assumptions.

(A5) Both the old and the new networks are
connected networks.

(A6) The topology change does not occur during
execution of a distributed algorithm.

(A7) There exists exactly one initiator (i.e. the
processor spontaneously) starts execution of a dist-
ributed algorithm). Each of other processors starts
the algorithm on receipt of a message.

24 Measures of efficiency
In this paper, we use the following efficiency

measures of a distributed algorithm.

® Message complexity : The (worst case) mess-

age complexity is the maximum total number of
messages transmitted during any execution of the
algorithm.

¢ Bit complexity : The (worst case) bit comple-
xity is the maximum total number of bits trans-
mitted during any execution of the algorithm.

® Ideal time complexity : The (worst case) ideal
time complexity is the maximum number of time
units from start to the completion of the algorithm.
In estimation of the ideal time complexity, we
assume that the propagation delay of every link is
at most one time unit. Notice that this assumption
is used only for purpose of evaluation of the ideal
time complexity.

® Space complexity : The (worst case) space co-
mplexity is the maximum total amount of storage of
all processors in the whole network.

3. Algorithm for BRP

In this section, we present an algorithm for upda-
ting the biconnected components after topology change.

3.1 Properties of the biconnected components

Park et al. [7] proposed a distributed algorithm
for computing the biconnected-components. By apply-
ing the algorithm to the new network N’, we can
solve the BRP with the message complexity O(e’)
and the ideal time complexity O(n’'), where n'(resp.
€') is the number of processors(resp. links) in N°.
The algorithm is based -on a distributed depth first
search algorithm in [6]. The depth first search
algorithm checks all links in the network, and this
requires the message complexity to be O(e’).

In the BRP, however, the following lemma obvi-
ously holds. The lemma implies that it is is not
necessary to check all links in the network, and that
there is possibility of reducing the message comple-
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xity of the BRP.

Lemma 1 If there is no deleted link in a bicon-
nected component B of the old network, B is includ-
ed in a biconnected component of the new network.

In what follows, for a biconnected component B
of the old network, we call it an injured biconnected
component if it contains a deleted link(ie. B N Ly
% ¢), and call it an uninjured biconnected compon-
ent if it contains no deleted link(ie. B N Ly = ¢).

If follows from Lemma 1 that it is not necessary
to check the biconnectivity of the links in an uni-
njured biconnected component. However, the links
amy be included in a larger biconnected component
of the new network, and we have to check the
uninjured biconnected component to some extent.
The following lemma implies that we have only to
check the links of a spanning tree of the uninjured
biconnected component.

lemma 2 Let N* = (P, L") be a network defined
as follows :

L* = U A U L. - Ly where Ai = Ti(if BiNLa =

1<i<m

$), and A; = Bi(if BiNLy * ¢).

Let u(eP’) be an arbitrary processor, and L'(w)
be the set of all links incident to u in N’(ie. L'(w)
= {(u,v)eL’| veP’}). Let Ry be the minimum equival-
ence relation on the link set L’(u) that satifies the
following three conditions :

(a) If both f and g(where {f, g}SL'(u)NL) are
links of the same uninjured biconnected com-
ponent of the old network N, then fR.g holds.

(b) If both f and g(where {f g)SL'(w)NL") are
links of the same biconnected component of
N°, then fR.g holds.

(c) If both of fRyg and gR.h hold, then fR.h
holds.

Then, for any links of f and g in L'(u), f and g

are links of the same biconnected component of N’
if and only if fR.g holds.

(proof) O If part : If links f and g are those of
the same uninjured biconnected component, it
follows from Lemma 1 that f and g are links of the
same biconnected component of N'. It is also clear
that f and g are links of the same biconnected
component of N’, if f and g are links of the same
biconnected component of N*. Therefore, f and g are
links of the same biconnected component of N’ if
fH.g holds.

O Only if part : We prove the only if part by
induction. For the induction, we define a network

= (P, L") for each j(0<j<m) as follows :

LY = U A/ULsLg,
1<i€m
where Al = Ti (if BiNLs = ¢ and i<j), and A/
=B (if BiNLa * ¢ or i>j).

From the definition, N** = N’ holds. We can
construct N* from N by replacing B; with T; if
B; is an uninjured biconnected component. It holds
N¥ = N'! if B is an injured biconnected
component. It is clear that N™" = N".

We also define an equivalence relation RJ on
L'(u) by the similar way to the definition of R..
The only difference is the oondition (b) in the
definition : we consider the biconnected components
of N* instead of those of N".

By the induction on j(0<j<m), we can prove
that fRJg holds if f and g are links of the same
biconnected component of N'.

O Inductive basis : For j = 0, it follows from N*
= N' that fRg holds if f and g are links of the
same biconnected component of N'.

O Inductive assumption : Assume that fR.g holds
if f and g are links of the same biconnected com-
ponent of N'.

O Inductive step:It is sufficient to show the



claimi : fR,'g holds if fR,g holds. If N™*! = N*¥,
it is clear that the claim holds. In the followings, we
prove the claim for the case of N*' % N* py
contradiction.

If the claim does not hold, we can show that there
exist links f = (uv) and g = (uw) in N*! such
that f and g are links of a common cycle of N**
but fR'g does not hold. Consider the simple v-w
path p obtained from the cycle by removing f and
g. Since N*"' is obtained from N'* by replacing
Bk with Txa and the path p does not exist in
N* b contains a link in Bx1 - Ti1. By replacing
the links in B - Tia with the paths in Tk. and
removing cycles if created, we can obtain a simple
v-w path p’ in N*'\ If the path p' does not con-
tain u, f and g are links of a common cycle in N**"!
and fR,"'g holds. It is a contradiction. If the path
p’ contains u, we can show that there exist links f'
= (uv') and g’ = (uw') in Tk such that f = ' or
f and f' are links of a common cycle in N™ and
such that g = g’ or g and g’ are links of a com-

(a) an old network N

(c) the network N° defined in Lemma 2
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mon cycle in N*' In any case, fRS'f, f'R g,

and g’R"'g hold, and thus fR.X'g holds. It is a
contradiction.

Lemma 2 considers the biconnectivity relation
only on the links incident to a common processor u.
However, since the links of the same biconnected
component form a connected subnetwork, the above
local biconnectivity relation uniquely defines the
biconnected components of the entire network.

Example Figure 1(a) shows an old network N
and its biconnected components. The links with the
same number form a biconnected component of N.
Figure 1(b) shows a new network N’ after the
topology change : one processor and three links are
added, and one processor and three links are added,
and one processor and three links are deleted.
Figure 1(c) shows the network N° defined in
Lemma2, and its biconnected components. Figure
1(d) shows the biconnected components of N’.

@
(b) a new network N

1 1
{(d) the biconnected components of N’

(F]g 1) Network N*
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Remark that we can obtain the biconnected compo-
nents of N’ from those of N and N by following
Lemma?2.

3.2 Qutline of the algorithm

The algorithm proposed in this paper utilizes
Lemma 2 to solve the BRP. Thus, the algorithm
consists of the following three phases.

P1 Construction of the network N° as defined in
Lemma 2 : every processor in the new network N’
determines which incident links are those of N".

P2 Computation of the biconnected components of
N’ : every processor assigns a label to each of its
incident links in N* so that the links with the same
label form a biconnected component of N*.

P3 Computation of the biconnected components of
the new network N’ : Based on Lemma 2, every
processor assigns a label to each of its incident
links in N’ so that the links with the same label
form a biconnected component of N'.

3.3 Destription of the algorithm
In this subsection, we present the algorithm for
the BRP.

331 The first phase

In the first phase, the network N' defined in
Lemma 2 is constructed, that is, every processor in
the new network N’ determines which incident links
are those of N".

To construct N efficiently, the algorithm perfor-
ms the depth-first search of N* during the cons-
truction of N*. When the initiator starts execution of
the algorithm or a processor is first visited by the
depth-first search, the processor (say u) determines
the incident links of N° as follows. After deter-
mining the incident links of N', u makes the depth-
first search proceed(ie. u sends the depth-first

search token to one of its neighbors).

® For each added link (u,v), u determines that
(u,v) is a link of N".

e For each link (u,v) of the old network N, u
determines that (u,v) is a link of N, if (uv) is a
link an injured biconnected component or (u,v) is a
tree link of the spanning tree T. If (u,v) is a link of
an uninjured biconnected component and (uv) is a
non-tree link of T, u determines that (u,v) is not a
link of N,

For each link (uyv) of the old network, a pro-
cessor u has to determine whether the biconnected
component (say Bi), containing (u,v) is injured or
not. The processor u can determine it using the
spanning tree T; of Bi. (Recall Ti = TNB). If there
exists a deleted link in B, Ti may be partitioned
into some fragments. In any case, however, there
exists a processor w in the fragment containing u
such that w is incident to a deleted link in B
Thus, by the broadcast-and-convergecast on the
fragment of T, u can efficiently determine whether
B: contains a deleted link or not. To avoid the
duplicate checks within the fragment, u broadcasts
the result to all processors in the fragment.

3.3.2 The second phase

In the second phase, the biconnected components
of N are computed by applying our algorithm in [7]
to N". The algorithm in [7] is based on the depth-
first search of N°, and it also constructs a rooted
spanning tree of N*. We utilize the spanning tree in
the third phase.

3.3.3 The three phase

In the third phase, the biconnected components of
the new network N’ are computed. From Lemma 2,
each processor can locally determine which incident
links are contained in the same biconnected compon-
ent. In the BRP, however, we have to assign a co-
mmon label to all links of the same biconnected
component.



To determine the label assigned to each link, we
use the rooted spanning tree T’ of N constructed in
the second phase. Notice that the processors in the
same biconnected component of N’ appear consecuti-
vely in T’, that is, T'NB;’ is a spanning tree of By
for each biconnected component Bi'(1<i<m’') of the
new network N’. Thus, for each B/{(1<i<m’), we
can uniquely determine a processor u; that is nearest
to the root among processors incident to a link of
Bi’. We call the processor u; a representative of Bi'.
The representative u; determines the unique label of
Bi' as follows.

In the third phase, the depth-first traverse of T’
is executed. During the depth-first traverse, we ma-
intain the number t of labeled biconnected compon-
ents of N’. When a representative u; first choose a
link of Bi to make the depth-first traverse proceed,
u; increments t by one and determines the label of
Bi to be the updated t. The processors incident to a
link of B; is informed of the label in- progress of the
depth-first traverse.

3.4 Complexities

In the following theorem, n(resp. e) is the number
of processors(resp. links) in the old network, n'(resp.
e') is the number of processors (resp. links) in the
new network, @ is the number of added links, and b
is the total number of links of N’ in the injured
biconnected components.

Theorem 1 The algorithm presented in this
section solves the BRP with the message complexity
of O(n’ + a + b), the bit complexity O((n’ + a +
bllog n’), the ideal time complexity O(n’), and the
space complexity Olelog n + e’log n').

(proof) The first and second phases can be
executed with the message complexity O(n' + g +
b) and the ideal time complexity O(n’) using the
depth-first search algorithm in [6] and the biconnec-
ted component algorithm in [7]. It is also clear that
both of the message complexity and the ideal time
complexity of the third phase are O(n’). Thus, the

OIFZd T M7y SMaeE 25619

message complexity and the ideal time complexity of
the whole algorithm is O(n' + a + b) and O(n")
respectively.

Notice that the label assigned to a link does not
exceed the number of processors. Thus, the length
of each message is O(log n'), and the bit complexity
is O(n’ + a + b) log n'). Since each processor
maintains the old label and the new label for each
of its incident links, the space complexity is O{elog
n+elogn) B

4. Conclusions

This paper proposed a distributed algorithm that
solves the BRP after several processors and links
are added and deleted. Its message complexity and
its ideal-time complexity are O(n'+a+b) and O(n')
respectively, where n’ is the number of processors
in the network after the topology change, a is the
number of added links, and b is the total number of
links in the biconnected components (of the network
before the topology change) including the deleted
links.
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